skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Simulation of the formation of antihydrogen via magnetobound positronium
Antihydrogen formation involving magnetobound positronium is simulated by computing classical trajectories. Simulated collisions between electrons and positrons generate magnetobound positronium, which consists of electron–positron pairs that are not energetically bound but that have spatially correlated trajectories within a magnetic field. Simulations show that antihydrogen can form if such electron–positron pairs pass near antiprotons. In addition, the possibility of forming antihydrogen atomic ions or antihydrogen molecular ions via magnetobound positronium or magnetobound antihydrogen is discussed.  more » « less
Award ID(s):
1803047
PAR ID:
10597411
Author(s) / Creator(s):
;
Publisher / Repository:
American Institute of Physics
Date Published:
Journal Name:
AIP Advances
Volume:
11
Issue:
9
ISSN:
2158-3226
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The positron, the antiparticle of the electron, predicted by Dirac in 1931 and discovered by Anderson in 1933, plays a key role in many scientific and everyday endeavours. Notably, the positron is a constituent of antihydrogen, the only long-lived neutral antimatter bound state that can currently be synthesized at low energy, presenting a prominent system for testing fundamental symmetries with high precision. Here, we report on the use of laser cooled Be + ions to sympathetically cool a large and dense plasma of positrons to directly measured temperatures below 7 K in a Penning trap for antihydrogen synthesis. This will likely herald a significant increase in the amount of antihydrogen available for experimentation, thus facilitating further improvements in studies of fundamental symmetries. 
    more » « less
  2. AbstractThe electric field surrounding a single positron in a metal is screened by an increase in the local electron density which, in the case of nearly free-electron metals (like Al, Na, etc.), has a radial distribution similar to that of the electron in positronium (Ps). In such metals, a singlet pair of positrons would experience an attractive interaction and at low enough electron densities could possibly form a bound state that is held together by exchange and correlation energies, thus forming structures analogous to that of the positronium molecule (Ps$$_2$$ 2 ), with binding energies of a few tenths of an eV. Such di-positrons could be prevalent at positron densities of around 10$$^{18}$$ 18 cm$$^{-3}$$ - 3 and, if so, would be evident from an apparent broadening of the sharp step at the Fermi surface in measurements of the electron momentum distribution by the angular correlation of the 2$$\gamma $$ γ annihilation radiation. Even if di-positrons are not directly formed in a metal, optical spectroscopy of Ps$$_2$$ 2 formed in vacuum via pairs of positrons simultaneously being emitted from the surface could be applied to the direct measurement of the momentum distribution of Cooper pairs. If they exist, di-positrons in metals would yield interesting information about electron and positron interactions and at very high densities might allow the study of a di-positron Bose–Einstein condensate immersed in an electron gas. Graphic Abstract 
    more » « less
  3. The positronium lifetime imaging (PLI) reconstruction is a technique used in time-of-flight (TOF) positron emission tomography (PET) imaging that involves measuring the lifespan of positronium, which is a metastable electron-positron pair that arises when a PET molecule releases a positron, prior to its annihilation. We have previously developed a maximum likelihood (ML) algorithm for PLI reconstruction and demonstrated that it can generate quantitatively accurate lifetime images for a 570 ps (pico-seconds) TOF PET system. In this study, we conducted further investigations into the statistical properties of the algorithm, including the variability of the reconstruction results, the sensitivity of the algorithm to the number of acquired PLI events and its robustness to hyperparameter choices. Our findings indicate that the proposed ML method produces sufficiently stable lifetime images to enable reliable distinction of regions of interest. Moreover, the number of PLI events required to produce quantitatively accurate lifetime images is computationally plausible. These results demonstrate the potential of our ML algorithm for advancing the capabilities of TOF PET imaging. 
    more » « less
  4. Positronium Lifetime Image (PLI) reconstruction is a technique used in time-of-flight (TOF) Positron emission tomography (PET) imaging that involves measuring the lifespan of positronium, which is a metastable electron-positron pair that arises when a PET molecule releases a positron, prior to its annihilation. In our previous work, we demonstrated that our proposed maximum likelihood (ML) algorithm for PLI reconstruction can generate quantitatively accurate lifetime images for a 570 ps TOF PET system. In this study, we conducted further investigations into the statistical properties of the algorithm, including the variability of the reconstruction results, the sensitivity of the algorithm to the number of acquired PLI events and its robustness to hyperparameter choices. Our findings indicate that the proposed ML method produces sufficiently stable lifetime images to enable reliable distinction of regions of interest and the number of PLI events required to produce quantitatively accurate lifetime images is computationally plausible. These results demonstrate the potential of our ML algorithm for advancing the capabilities of TOF PET imaging. 
    more » « less
  5. We investigate the quantum dynamics of target excitation and positronium formation in the positron-hydrogen atom scattering without and with an external assisting laser field within a reduced-dimensional quantum model. Strong interference fringes between the incident and reflected positron wave packets are observed in the reaction region. We further investigate the critical behavior of transition probabilities near the channel-opening thresholds for hydrogen excitation and positronium formation and find a strong competition between channels with similar threshold energies, but different parities. The transmission ratios of the incident positron in different reaction channels are calculated, and it is shown that only positronium formation in the ground state prefers forward scattering. Our simulation of the positron-hydrogen scattering with an assisting laser field indicates that the three-particle bound states can be formed during the collisions due to the photon emission induced by the external laser field. 
    more » « less