skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Validation of an OpenFOAM®-based solver for the Euler equations with benchmarks for mesoscale atmospheric modeling
Within OpenFOAM, we develop a pressure-based solver for the Euler equations written in conservative form using density, momentum, and total energy as variables. Under simplifying assumptions, these equations are used to describe non-hydrostatic atmospheric flow. For the stabilization of the Euler equations and to capture sub-grid processes, we consider two Large Eddy Simulation models: the classical Smagorinsky model and the one equation eddy-viscosity model. To achieve high computational efficiency, our solver uses a splitting scheme that decouples the computation of each variable. The numerical results obtained with our solver are validated against numerical data available in the literature for two classical benchmarks: the rising thermal bubble and the density current. Through qualitative and quantitative comparisons, we show that our approach is accurate. This paper is meant to lay the foundation for a new open-source package specifically created for the quick assessment of new computational approaches for the simulation of atmospheric flows at the mesoscale level.  more » « less
Award ID(s):
1953535
PAR ID:
10597513
Author(s) / Creator(s):
; ;
Publisher / Repository:
American Institute of Physics
Date Published:
Journal Name:
AIP Advances
Volume:
13
Issue:
5
ISSN:
2158-3226
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Taylor and Francis (Ed.)
    A new computational methodology, termed ‘PeleLM-FDF’ is developed and utilised for high fidelity large eddy simulation (LES) of complex turbulent combustion systems. This methodology is constructed via a hybrid scheme combining the Eulerian PeleLM base flow solver with the Lagrangian Monte Carlo simulator of the filtered density func- tion (FDF) for the subgrid scale reactive scalars. The resulting methodology is capable of simulating some of the most intricate physics of complex turbulence-combustion interactions. This is demonstrated by LES of a non-premixed CO/H2 temporally evolv- ing jet flame. The chemistry is modelled via a skeletal kinetics model, and the results are appraised via a posteriori comparisons against direct numerical simulation (DNS) data of the same flame. Excellent agreements are observed for the time evolution of various statistics of the thermo-chemical quantities, including the manifolds of the multi-scalar mixing. The new methodology is capable of capturing the complex phe- nomena of flame-extinction and re-ignition at a 1/512 of the computational cost of the DNS. The high fidelity and the computational affordability of the new PeleLM-FDF solver warrants its consideration for LES of practical turbulent combustion systems. 
    more » « less
  2. In this paper, a new mathematical model based on partial differential equations is proposed to study the spatial spread of infectious diseases. The model incorporates fluid dynamics theory and represents the epidemic spread as a fluid motion generated through the interaction between the susceptible and infected hosts. At the macroscopic level, the spread of the infection is modeled as an inviscid flow described by the Euler equation. Nontrivial numerical methods from computational fluid dynamics (CFD) are applied to investigate the model. In particular, a fifth-order weighted essentially non-oscillatory (WENO) scheme is employed for the spatial discretization. As an application, this mathematical and computational framework is used in a simulation study for the COVID-19 outbreak in Wuhan, China. The simulation results match the reported data for the cumulative cases with high accuracy and generate new insight into the complex spatial dynamics of COVID-19. 
    more » « less
  3. The toolkit for high-order neutrino-radiation hydrodynamics (thornado) is being developed for simulations of core-collapse supernovae (CCSNe) and related problems. Current capabilities in thornado include solvers for the Euler equations — in non-relativistic and special relativistic limits — and the two-moment model of neutrino transport. The spatial discretization in thornado is based on the discontinuous Galerkin (DG) method, which is receiving increased attention from the computational astrophysics community. In this paper, we provide an overview of the numerical methods for the Euler equations in thornado, and present some encouraging preliminary numerical results from a set of basic tests in one and two spatial dimensions. 
    more » « less
  4. Abstract Recent studies have highlighted the importance of accurate meteorological conditions for urban transport and dispersion calculations. In this work, we present a novel scheme to compute the meteorological input in the Quick Urban & Industrial Complex () diagnostic urban wind solver to improve the characterization of upstream wind veer and shear in the Atmospheric Boundary Layer (ABL). The new formulation is based on a coupled set of Ordinary Differential Equations (ODEs) derived from the Reynolds Averaged Navier–Stokes (RANS) equations, and is fast to compute. Building upon recent progress in modeling the idealized ABL, we include effects from surface roughness, turbulent stress, Coriolis force, buoyancy and baroclinicity. We verify the performance of the new scheme with canonical Large Eddy Simulation (LES) tests with the GPU-accelerated FastEddyEquation missing<#comment/>solver in neutral, stable, unstable and baroclinic conditions with different surface roughness. Furthermore, we evaluate QUIC calculations with and without the new inflow scheme with real data from the Urban Threat Dispersion (UTD) field experiment, which includes Lidar-based wind measurements as well as concentration observations from multiple outdoor releases of a non-reactive tracer in downtown New York City. Compared to previous inflow capabilities that were limited to a constant wind direction with height, we show that the new scheme can model wind veer in the ABL and enhance the prediction of the surface cross-isobaric angle, improving evaluation statistics of simulated concentrations paired in time and space with UTD measurements. 
    more » « less
  5. In this paper, we investigate how the self-synchronization property of a swarm of Kuramoto oscillators can be controlled and exploited to achieve target densities and target phase coherence. In the limit of an infinite number of oscillators, the collective dynamics of the agents’ density is described by a mean-field model in the form of a nonlocal PDE, where the nonlocality arises from the synchronization mechanism. In this mean-field setting, we introduce two space-time dependent control inputs to affect the density of the oscillators: an angular velocity field that corresponds to a state feedback law for individual agents, and a control parameter that modulates the strength of agent interactions over space and time, i.e., a multiplicative control with respect to the integral nonlocal term. We frame the density tracking problem as a PDE-constrained optimization problem. The controlled synchronization and phase-locking are measured with classical polar order metrics. After establishing the mass conservation property of the mean-field model and bounds on its nonlocal term, a system of first-order necessary conditions for optimality is recovered using a Lagrangian method. The optimality system, comprising a nonlocal PDE for the state dynamics equation, the respective nonlocal adjoint dynamics, and the Euler equation, is solved iteratively following a standard Optimize-then-Discretize approach and an efficient numerical solver based on spectral methods. We demonstrate our approach for each of the two control inputs in simulation. 
    more » « less