In this article, we consider the problem of stabilizing a class of degenerate stochastic processes, which are constrained to a bounded Euclidean domain or a compact smooth manifold, to a given target probability density. This stabilization problem arises in the field of swarm robotics, for example, in applications where a swarm of robots is required to cover an area according to a target probability density. Most existing works on modeling and control of robotic swarms that use partial differential equation (PDE) models assume that the robots' dynamics are holonomic and, hence, the associated stochastic processes have generators that are elliptic. We relax this assumption on the ellipticity of the generator of the stochastic processes, and consider the more practical case of the stabilization problem for a swarm of agents whose dynamics are given by a controllable driftless control-affine system. We construct state-feedback control laws that exponentially stabilize a swarm of nonholonomic agents to a target probability density that is sufficiently regular. State-feedback laws can stabilize a swarm only to target probability densities that are positive everywhere. To stabilize the swarm to probability densities that possibly have disconnected supports, we introduce a semilinear PDE model of a collection of interacting agents governed by a hybrid switching diffusion process. The interaction between the agents is modeled using a (mean-field) feedback law that is a function of the local density of the swarm, with the switching parameters as the control inputs. We show that under the action of this feedback law, the semilinear PDE system is globally asymptotically stable about the given target probability density. The stabilization strategies with and without agent interactions are verified numerically for agents that evolve according to the Brockett integrator; the strategy with interactions is additionally verified for agents that evolve according to an underactuated s...
more »
« less
Optimal Control of Velocity and Nonlocal Interactions in the Mean-Field Kuramoto Model
In this paper, we investigate how the self-synchronization property of a swarm of Kuramoto oscillators can be controlled and exploited to achieve target densities and target phase coherence. In the limit of an infinite number of oscillators, the collective dynamics of the agents’ density is described by a mean-field model in the form of a nonlocal PDE, where the nonlocality arises from the synchronization mechanism. In this mean-field setting, we introduce two space-time dependent control inputs to affect the density of the oscillators: an angular velocity field that corresponds to a state feedback law for individual agents, and a control parameter that modulates the strength of agent interactions over space and time, i.e., a multiplicative control with respect to the integral nonlocal term. We frame the density tracking problem as a PDE-constrained optimization problem. The controlled synchronization and phase-locking are measured with classical polar order metrics. After establishing the mass conservation property of the mean-field model and bounds on its nonlocal term, a system of first-order necessary conditions for optimality is recovered using a Lagrangian method. The optimality system, comprising a nonlocal PDE for the state dynamics equation, the respective nonlocal adjoint dynamics, and the Euler equation, is solved iteratively following a standard Optimize-then-Discretize approach and an efficient numerical solver based on spectral methods. We demonstrate our approach for each of the two control inputs in simulation.
more »
« less
- Award ID(s):
- 1828010
- PAR ID:
- 10432746
- Date Published:
- Journal Name:
- 2022 American Control Conference (ACC)
- Page Range / eLocation ID:
- 290 to 295
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Mean-field games (MFGs) provide a statistical physics-inspired modelling framework for decision-making in large populations of strategic, non-cooperative agents. Mathematically, these systems consist of a forwards–backwards in time-system of two coupled nonlinear partial differential equations (PDEs), namely, the Fokker–Plank (FP) and the Hamilton–Jacobi–Bellman (HJB) equations, governing the agent state and control distribution, respectively. In this work, we study a finite-time MFG with a rich global bifurcation structure using a reduced-order model (ROM). The ROM is a four-dimensional (4D) two-point boundary value problem (BVP) obtained by restricting the controlled dynamics to the first two moments of the agent state distribution, i.e. the mean and the variance. Phase space analysis of the ROM reveals that the invariant manifolds of periodic orbits around the so-called ‘ergodic MFG equilibrium’ play a crucial role in determining the bifurcation diagram and imparting a topological signature to various solution branches. We show a qualitative agreement of these results with numerical solutions of the full-order MFG PDE system.more » « less
-
We propose a sampling method based on an ensemble approximation of second order Langevin dynamics. The log target density is appended with a quadratic term in an auxiliary momentum variable and damped-driven Hamiltonian dynamics introduced; the resulting stochastic differential equation is invariant to the Gibbs measure, with marginal on the position coordinates given by the target. A preconditioner based on covariance under the law of position coordinates under the dynamics does not change this invariance property, and is introduced to accelerate convergence to the Gibbs measure. The resulting mean-field dynamics may be approximated by an ensemble method; this results in a gradient-free and affine-invariant stochastic dynamical system with desirable provably uniform convergence properties across the class of all Gaussian targets. Numerical results demonstrate the potential of the method as the basis for a numerical sampler in Bayesian inverse problems, beyond the Gaussian setting.more » « less
-
We consider the problem of controlling the dynamic state of each of a finite collection of targets distributed in physical space using a much smaller collection of mobile agents. Each agent can attend to no more than one target at a given time, thus agents must move between targets to control the collective state, implying that the states of each of the individual targets are only controlled intermittently. We assume that the state dynamics of each of the targets are given by a linear, timeinvariant, controllable system and develop conditions on the visiting schedules of the agents to ensure that the property of controllability is maintained in the face of the intermittent control. We then introduce constraints on the magnitude of the control input and a bounded disturbance into the target dynamics and develop a method to evaluate system performance under this scenario. Finally, we use this method to determine how the amount of time the agents spend at a given target before switching to the next in its sequence influencesmore » « less
-
In this paper, we study the maximum principle of mean field type control problems when the volatility function depends on the state and its measure and also the control, by using our recently developed method in [Bensoussan, A., Huang, Z. and Yam, S. C. P. [2023] Control theory on Wasserstein space: A new approach to optimality conditions, Ann. Math. Sci. Appl.; Bensoussan, A., Tai, H. M. and Yam, S. C. P. [2023] Mean field type control problems, some Hilbert-space-valued FBSDEs, and related equations, preprint (2023), arXiv:2305.04019; Bensoussan, A. and Yam, S. C. P. [2019] Control problem on space of random variables and master equation, ESAIM Control Optim. Calc. Var. 25, 10]. Our method is to embed the mean field type control problem into a Hilbert space to bypass the evolution in the Wasserstein space. We here give a necessary condition and a sufficient condition for these control problems in Hilbert spaces, and we also derive a system of forward–backward stochastic differential equations.more » « less
An official website of the United States government

