Abstract Multifunctionality as a paradigm requires materials exhibiting multiple superior properties. Integrating second‐order optical nonlinearity and large bandgap with piezoelectricity can, for example, enable broadband, strain‐tunable photonics. Though very different phenomena at distinct frequencies, both second‐order optical nonlinearity and piezoelectricity are third‐rank polar tensors present only in acentric crystal structures. However, simultaneously enhancing both phenomena is highly challenging since it involves competing effects with tradeoffs. Recently, a large switchable ferroelectric polarization of ≈80 μC cm−2was reported in Zn1‐xMgxO films. Here, ferroelectric Zn1‐xMgxO is demonstrated to be a platform that hosts simultaneously a 30% increase in the electronic bandgap, a 50% enhancement in the second harmonic generation (SHG) coefficients, and a near 200% improvement in the piezoelectric coefficients over pure ZnO. These enhancements are shown to be due to a 400% increase in the electronic anharmonicity and a ≈200% decrease in the ionic anharmonicity with Mg substitution. Precisely controllable periodic ferroelectric domain gratings are demonstrated down to 800 nm domain width, enabling ultraviolet quasi‐phase‐matched optical harmonic generation as well as domain‐engineered piezoelectric devices.
more »
« less
Colossal Strain Tuning of Ferroelectric Transitions in KNbO 3 Thin Films
Abstract Strong coupling between polarization (P) and strain (ɛ) in ferroelectric complex oxides offers unique opportunities to dramatically tune their properties. Here colossal strain tuning of ferroelectricity in epitaxial KNbO3thin films grown by sub‐oxide molecular beam epitaxy is demonstrated. While bulk KNbO3exhibits three ferroelectric transitions and a Curie temperature (Tc) of ≈676 K, phase‐field modeling predicts that a biaxial strain of as little as −0.6% pushes itsTc> 975 K, its decomposition temperature in air, and for −1.4% strain, toTc> 1325 K, its melting point. Furthermore, a strain of −1.5% can stabilize a single phase throughout the entire temperature range of its stability. A combination of temperature‐dependent second harmonic generation measurements, synchrotron‐based X‐ray reciprocal space mapping, ferroelectric measurements, and transmission electron microscopy reveal a single tetragonal phase from 10 K to 975 K, an enhancement of ≈46% in the tetragonal phase remanent polarization (Pr), and a ≈200% enhancement in its optical second harmonic generation coefficients over bulk values. These properties in a lead‐free system, but with properties comparable or superior to lead‐based systems, make it an attractive candidate for applications ranging from high‐temperature ferroelectric memory to cryogenic temperature quantum computing.
more »
« less
- PAR ID:
- 10597644
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- Wiley VCH
- Date Published:
- Journal Name:
- Advanced Materials
- Volume:
- 36
- Issue:
- 52
- ISSN:
- 0935-9648
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Ferro-rotational magnet RbFe(SO4)2has attracted attention for its stable ferro-rotational phase and electric-field-controlled magnetic chirality. This work presents the multiferroic properties andH–Tphase diagram of RbFe(SO4)2, which have been underexplored. Our measurements of magnetic susceptibility, ferroelectric polarization, and dielectric constant under various magnetic fields reveal four distinct phases: (I) a ferroelectric and helical magnetic phase below 4 K and 6 T, (II) a paraelectric and collinear magnetic phase below 4 K and above 6 T, (III) a paraelectric and non-collinear magnetic phase below 4 K and above 9 T, and (IV) a paraelectric and paramagnetic above 4 K. This study clarifies the multiferroic behavior andH–Tphase diagram of RbFe(SO4)2, providing valuable insights into ferro-rotational magnets.more » « less
-
Iron-chalcogenide superconductors FeSe1−xSxpossess unique electronic properties such as nonmagnetic nematic order and its quantum critical point. The nature of superconductivity with such nematicity is important for understanding the mechanism of unconventional superconductivity. A recent theory suggested the possible emergence of a fundamentally new class of superconductivity with the so-called Bogoliubov Fermi surfaces (BFSs) in this system. However, such an ultranodal pair state requires broken time-reversal symmetry (TRS) in the superconducting state, which has not been observed experimentally. Here, we report muon spin relaxation (μSR) measurements in FeSe1−xSxsuperconductors for0≤x≤0.22covering both orthorhombic (nematic) and tetragonal phases. We find that the zero-field muon relaxation rate is enhanced below the superconducting transition temperatureTcfor all compositions, indicating that the superconducting state breaks TRS both in the nematic and tetragonal phases. Moreover, the transverse-fieldμSR measurements reveal that the superfluid density shows an unexpected and substantial reduction in the tetragonal phase (x>0.17). This implies that a significant fraction of electrons remain unpaired in the zero-temperature limit, which cannot be explained by the known unconventional superconducting states with point or line nodes. The TRS breaking and the suppressed superfluid density in the tetragonal phase, together with the reported enhanced zero-energy excitations, are consistent with the ultranodal pair state with BFSs. The present results reveal two different superconducting states with broken TRS separated by the nematic critical point in FeSe1−xSx, which calls for the theory of microscopic origins that account for the relation between nematicity and superconductivity.more » « less
-
Abstract Antiferroelectrics are a promising class of materials for applications in capacitive energy storage and multi‐state memory, but comprehensive control of their functional properties requires further research. In thin films, epitaxial strain and size effects are important tuning knobs but difficult to probe simultaneously due to low critical thicknesses of common lead‐based antiferroelectrics. Antiferroelectric NaNbO3enables opportunities for studying size effects under strain, but electrical properties of ultra‐thin films have not been thoroughly investigated due to materials challenges. Here, high‐quality, epitaxial, coherently‐strained NaNbO3films are synthesized from 35‐ to 250‐ nm thickness, revealing a transition from a fully ferroelectric state to coexisting ferroelectric and antiferroelectric phases with increasing thickness. The electrical performance of this phase coexistence is analyzed through positive‐up negative‐down and first‐order reversal curve measurements. Further increasing thickness leads to a fully ferroelectric state due to a strain relief mechanism that suppresses the antiferroelectricity. The potential of engineering competing ferroic orders in NaNbO3for multiple applications is evaluated, reporting significantly enhanced recoverable energy density (20.6 J cm−3at 35 nm) and energy efficiency (90% at 150 nm) relative to pure bulk NaNbO3as well as strong retention and fatigue performance with multiple accessible polarization states in the intermediate thickness films.more » « less
-
We present a comprehensive study of the inhomogeneous mixed-valence compound, EuPd3S4, by electrical transport, X-ray diffraction, time-domain151Eu synchrotron Mössbauer spectroscopy, and X-ray absorption spectroscopy measurements under high pressure. Electrical transport measurements show that the antiferromagnetic ordering temperature,TN, increases rapidly from 2.8 K at ambient pressure to 23.5 K at ~19 GPa and plateaus between ~19 and ~29 GPa after which no anomaly associated withTNis detected. A pressure-induced first-order structural transition from cubic to tetragonal is observed, with a rather broad coexistence region (~20 GPa to ~30 GPa) that corresponds to theTNplateau. Mössbauer spectroscopy measurements show a clear valence transition from approximately 50:50 Eu2+:Eu3+to fully Eu3+at ~28 GPa, consistent with the vanishing of the magnetic order at the same pressure. X-ray absorption data show a transition to a fully trivalent state at a similar pressure. Our results show that pressure first greatly enhancesTN, most likely via enhanced hybridization between the Eu 4fstates and the conduction band, and then, second, causes a structural phase transition that coincides with the conversion of the europium to a fully trivalent state.more » « less
An official website of the United States government

