skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on January 11, 2026

Title: Stability threshold of nearly-Couette shear flows with Navier boundary conditions in 2D
In this work, we prove a threshold theorem for the 2D Navier-Stokes equations posed on the periodic channel, $$\mathbb{T} \times [-1,1]$$, supplemented with Navier boundary conditions $$\omega|_{y = \pm 1} = 0$$. Initial datum is taken to be a perturbation of Couette in the following sense: the shear component of the perturbation is assumed small (in an appropriate Sobolev space) but importantly is independent of $$\nu$$. On the other hand, the nonzero modes are assumed size $$O(\nu^{\frac12})$$ in an anisotropic Sobolev space. For such datum, we prove nonlinear enhanced dissipation and inviscid damping for the resulting solution. The principal innovation is to capture quantitatively the \textit{inviscid damping}, for which we introduce a new Singular Integral Operator which is a physical space analogue of the usual Fourier multipliers which are used to prove damping. We then include this SIO in the context of a nonlinear hypocoercivity framework.  more » « less
Award ID(s):
2108633
PAR ID:
10597650
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Springer
Date Published:
Journal Name:
Communications in Mathematical Physics
ISSN:
1432-0916
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Tobias Ekholm (Ed.)
    We prove nonlinear asymptotic stability of a large class of monotonic shear flows among solutions of the 2D Euler equations in the channel $$\mathbb{T}\times[0,1]$$. More precisely, we consider shear flows $(b(y),0)$ given by a function $$b$$ which is Gevrey smooth, strictly increasing, and linear outside a compact subset of the interval $(0,1)$ (to avoid boundary contributions which are incompatible with inviscid damping). We also assume that the associated linearized operator satisfies a suitable spectral condition, which is needed to prove linear inviscid damping. Under these assumptions, we show that if $$u$$ is a solution which is a small and Gevrey smooth perturbation of such a shear flow $(b(y),0)$ at time $t=0$, then the velocity field $$u$$ converges strongly to a nearby shear flow as the time goes to infinity. This is the first nonlinear asymptotic stability result for Euler equations around general steady solutions for which the linearized flow cannot be explicitly solved. 
    more » « less
  2. Abstract We investigate the long‐time properties of the two‐dimensional inviscid Boussinesq equations near a stably stratified Couette flow, for an initial Gevrey perturbation of size ε. Under the classical Miles‐Howard stability condition on the Richardson number, we prove that the system experiences a shear‐buoyancy instability: the density variation and velocity undergo an inviscid damping while the vorticity and density gradient grow as . The result holds at least until the natural, nonlinear timescale . Notice that the density behaves very differently from a passive scalar, as can be seen from the inviscid damping and slower gradient growth. The proof relies on several ingredients: (A) a suitable symmetrization that makes the linear terms amenable to energy methods and takes into account the classical Miles‐Howard spectral stability condition; (B) a variation of the Fourier time‐dependent energy method introduced for the inviscid, homogeneous Couette flow problem developed on a toy model adapted to the Boussinesq equations, that is, tracking the potential nonlinear echo chains in the symmetrized variables despite the vorticity growth. 
    more » « less
  3. We prove the inviscid limit for the incompressible Navier-Stokes equations for data that are analytic only near the boundary in a general two-dimensional bounded domain. Our proof is direct, using the vorticity formulation with a nonlocal boundary condition, the explicit semigroup of the linear Stokes problem near the flatten boundary, and the standard wellposedness theory of Navier-Stokes equations in Sobolev spaces away from the boundary. 
    more » « less
  4. We prove the well posedness in weighted Sobolev spaces of certain linear and nonlinear elliptic boundary value problems posed on convex domains and under singular forcing. It is assumed that the weights belong to the Muckenhoupt class with ). We also propose and analyze a convergent finite element discretization for the nonlinear elliptic boundary value problems mentioned above. As an instrumental result, we prove that the discretization of certain linear problems are well posed in weighted spaces. 
    more » « less
  5. Abstract We prove well‐posedness of a class ofkinetic‐typemean field games (MFGs), which typically arise when agents control their acceleration. Such systems include independent variables representing the spatial position as well as velocity. We consider non‐separable Hamiltonians without any structural conditions, which depend locally on the density variable. Our analysis is based on two main ingredients: an energy method for the forward–backward system in Sobolev spaces, on the one hand, and on a suitablevector field methodto control derivatives with respect to the velocity variable, on the other hand. The careful combination of these two techniques reveals interesting phenomena applicable for MFGs involving general classes of drift‐diffusion operators and non‐linearities. While many prior existence theories for general MFGs systems take the final datum function to be smoothing, we can allow this function to be non‐smoothing, that is, also depending locally on the final measure. Our well‐posedness results hold under an appropriate smallness condition, assumed jointly on the data. 
    more » « less