skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on June 13, 2026

Title: Kinetic‐type mean field games with non‐separable local Hamiltonians
Abstract We prove well‐posedness of a class ofkinetic‐typemean field games (MFGs), which typically arise when agents control their acceleration. Such systems include independent variables representing the spatial position as well as velocity. We consider non‐separable Hamiltonians without any structural conditions, which depend locally on the density variable. Our analysis is based on two main ingredients: an energy method for the forward–backward system in Sobolev spaces, on the one hand, and on a suitablevector field methodto control derivatives with respect to the velocity variable, on the other hand. The careful combination of these two techniques reveals interesting phenomena applicable for MFGs involving general classes of drift‐diffusion operators and non‐linearities. While many prior existence theories for general MFGs systems take the final datum function to be smoothing, we can allow this function to be non‐smoothing, that is, also depending locally on the final measure. Our well‐posedness results hold under an appropriate smallness condition, assumed jointly on the data.  more » « less
Award ID(s):
2307638
PAR ID:
10608271
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Oxford University Press (OUP)
Date Published:
Journal Name:
Journal of the London Mathematical Society
Volume:
111
Issue:
6
ISSN:
0024-6107
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We consider an optimal control problem where the state equations are a coupled hyperbolic–elliptic system. This system arises in elastodynamics with piezoelectric effects—the elastic stress tensor is a function of elastic displacement and electric potential. The electric flux acts as the control variable and bound constraints on the control are considered. We develop a complete analysis for the state equations and the control problem. The requisite regularity on the control, to show the well-posedness of the state equations, is enforced using the cost functional. We rigorously derive the first-order necessary and sufficient conditions using adjoint equations and further study their well-posedness. For spatially discrete (time-continuous) problems, we show the convergence of our numerical scheme. Three-dimensional numerical experiments are provided showing convergence properties of a fully discrete method and the practical applicability of our approach. 
    more » « less
  2. null (Ed.)
    In this paper we consider a problem of initial data identification from the final time observation for homogeneous parabolic problems. It is well-known that such problems are exponentially ill-posed due to the strong smoothing property of parabolic equations. We are interested in a situation when the initial data we intend to recover is known to be sparse, i.e. its support has Lebesgue measure zero. We formulate the problem as an optimal control problem and incorporate the information on the sparsity of the unknown initial data into the structure of the objective functional. In particular, we are looking for the control variable in the space of regular Borel measures and use the corresponding norm as a regularization term in the objective functional. This leads to a convex but non-smooth optimization problem. For the discretization we use continuous piecewise linear finite elements in space and discontinuous Galerkin finite elements of arbitrary degree in time. For the general case we establish error estimates for the state variable. Under a certain structural assumption, we show that the control variable consists of a finite linear combination of Dirac measures. For this case we obtain error estimates for the locations of Dirac measures as well as for the corresponding coefficients. The key to the numerical analysis are the sharp smoothing type pointwise finite element error estimates for homogeneous parabolic problems, which are of independent interest. Moreover, we discuss an efficient algorithmic approach to the problem and show several numerical experiments illustrating our theoretical results. 
    more » « less
  3. Buttazzo, G.; Casas, E.; de Teresa, L.; Glowinski, R.; Leugering, G.; Trélat, E.; Zhang, X. (Ed.)
    An optimal control problem is considered for a stochastic differential equation with the cost functional determined by a backward stochastic Volterra integral equation (BSVIE, for short). This kind of cost functional can cover the general discounting (including exponential and non-exponential) situations with a recursive feature. It is known that such a problem is time-inconsistent in general. Therefore, instead of finding a global optimal control, we look for a time-consistent locally near optimal equilibrium strategy. With the idea of multi-person differential games, a family of approximate equilibrium strategies is constructed associated with partitions of the time intervals. By sending the mesh size of the time interval partition to zero, an equilibrium Hamilton–Jacobi–Bellman (HJB, for short) equation is derived, through which the equilibrium value function and an equilibrium strategy are obtained. Under certain conditions, a verification theorem is proved and the well-posedness of the equilibrium HJB is established. As a sort of Feynman–Kac formula for the equilibrium HJB equation, a new class of BSVIEs (containing the diagonal value Z ( r , r ) of Z (⋅ , ⋅)) is naturally introduced and the well-posedness of such kind of equations is briefly presented. 
    more » « less
  4. Abstract This article represents a 1st step toward understanding the well-posedness of the dispersive Hunter–Saxton equation, which arises in the study of nematic liquid crystals. Although the equation has formal similarities with the KdV equation, the lack of $L^2$ control gives it a quasilinear character. Further, the lack of spatial decay obstructs access to dispersive tools, including local smoothing estimates. Here, we give the 1st proof of local and global well-posedness for the Cauchy problem. Secondly, we improve our well-posedness results with respect to the low regularity of the initial data. The key techniques we use include constructing modified energies to realize a normal form analysis in our quasilinear setting, and frequency envelopes to prove continuous dependence with respect to the initial data. 
    more » « less
  5. Abstract We provide a complete local well-posedness theory inHsbased Sobolev spaces for the free boundary incompressible Euler equations with zero surface tension on a connected fluid domain. Our well-posedness theory includes: (i) Local well-posedness in the Hadamard sense, i.e., local existence, uniqueness, and the first proof of continuous dependence on the data, all in low regularity Sobolev spaces; (ii) Enhanced uniqueness: Our uniqueness result holds at the level of the Lipschitz norm of the velocity and the$$C^{1,\frac{1}{2}}$$regularity of the free surface; (iii) Stability bounds: We construct a nonlinear functional which measures, in a suitable sense, the distance between two solutions (even when defined on different domains) and we show that this distance is propagated by the flow; (iv) Energy estimates: We prove refined, essentially scale invariant energy estimates for solutions, relying on a newly constructed family of elliptic estimates; (v) Continuation criterion: We give the first proof of a sharp continuation criterion in the physically relevant pointwise norms, at the level of scaling. In essence, we show that solutions can be continued as long as the velocity is in$$L_T^1W^{1,\infty}$$and the free surface is in$$L_T^1C^{1,\frac{1}{2}}$$, which is at the same level as the Beale-Kato-Majda criterion for the boundaryless case; (vi) A novel proof of the construction of regular solutions. Our entire approach is in the Eulerian framework and can be adapted to work in more general fluid domains. 
    more » « less