skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Effects of Prairie Degradation and Restoration on Box Turtle Thermal Ecology
Prairie habitat loss in the United States has led to population declines in many prairie-associated species, including Ornate Box Turtles (Terrapene ornata). Northwest Arkansas is an intergrade zone between the prairie-dwelling T. ornata and the more forestassociated Three-Toed Box Turtle (Terrapene carolina). As such, limited information exists on the potential differences in physiology and thermal ecology between the two box turtle species and how those differences might influence their habitat use. We addressed gaps in our knowledge of the thermal and spatial ecology of T. ornata and T. carolina with a three-part study. First, we compared the thermal profiles of refugia, open, and vegetated microhabitats across degraded prairie, restored prairie, and adjacent forest macrohabitats using operative temperature models and a linear mixed effect model. Second, we measured total evaporative water loss of both species across a range of body sizes. Finally, we fitted a subset of turtles with iButton data loggers and monitored them in the field to examine carapace temperatures and habitat use. Operative temperature models recorded high, largely homogeneous temperatures across microhabitats in degraded prairie and heterogeneous temperatures across restored prairie microhabitats, while forest habitat maintained stable, cool temperatures. Both species exhibited similar evaporative water loss rates; however, T. ornata experienced a broader range of temperatures in the field. Terrapene ornata were exclusively found in prairie habitat, whereas T. carolina was often found in forested habitats and subsurface refugia. Our results demonstrate key differences in box turtle thermal biology and highlight suboptimal thermal characteristics in degraded prairie and forest habitat that should be considered in prairie restoration and management for T. ornata conservation.  more » « less
Award ID(s):
2051120
PAR ID:
10597706
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Society for the Study of Amphibians and Reptiles
Date Published:
Journal Name:
Journal of herpetology
Volume:
5
Issue:
1
ISSN:
0022-1511
Page Range / eLocation ID:
92-98
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The ornate box turtle (Terrapene ornata Agassiz) is a species of greatest conservation need in South Dakota. Habitat loss through agricultural development and fragmentation is the main threat to the species throughout its range, which extends from Wisconsin and northern Indiana through the central Great Plains, and from southern South Dakota to Arizona, northern Mexico, and the Gulf Coast of Texas. The objectives of this study were to determine the ornate box turtle’s preferred vegetation characteristics (microhabitat) compared to the available habitat (macrohabitat) on the Pine Ridge Reservation, South Dakota Sandhills region, during 2010–2011. In both years, using a modified Robel pole method, we determined that turtles selected microhabitat with greater visual obstruction readings (VORs) than those within the random available macrohabitat (P < 0.01), with means of 22 cm and 15 cm, respectively. Higher VOR values indicate greater vegetation height and/or density. Canopy cover results showed that ornate box turtles exhibited high selection (P < 0.01) for sand sagebrush (Artemisia filifolia Torr.) coverage (38%) but selected lower cover than available within the macrohabitat for total grasses (37%), total forbs (19%), and bare ground (14%). Shrubs, such as sand sagebrush, are an important component of box turtle microhabitat, as they facilitate thermoregulation by providing cool areas during the summer and favorable hibernation sites during the winter. Shrub coverage is highly recommended for consideration when developing habitat management plans that aim to increase or sustain ornate box turtle populations in the Sandhills ecological type. 
    more » « less
  2. Abstract The conversion of natural habitats to human land uses often increases local temperatures, creating novel thermal environments for species. The variable responses of ectotherms to habitat conversion, where some species decline while others persist, can partly be explained by variation among species in their thermal niches. However, few studies have examined thermal niche variation within species and across forest‐land use ecotones, information that could provide clues about the capacity of species to adapt to changing temperatures. Here, we quantify individual‐level variation in thermal traits of the tropical poison frog,Oophaga pumilio, in thermally contrasting habitats. Specifically, we examined local environmental temperatures, field body temperatures (Tb), preferred body temperatures (Tpref), critical thermal maxima (CTmax), and thermal safety margins (TSM) of individuals from warm, converted habitats and cool forests. We found that frogs from converted habitats exhibited greater meanTbandTprefthan those from forests. In contrast,CTmaxandTSMdid not differ significantly between habitats. However,CTmaxdid increase moderately with increasingTb, suggesting that changes inCTmaxmay be driven by microscale temperature exposure within habitats rather than by mean habitat conditions. AlthoughO. pumilioexhibited moderate divergence inTpref,CTmaxappears to be less labile between habitats, possibly due to the ability of frogs in converted habitats to maintain theirTbbelow air temperatures that reach or exceedCTmax. Selective pressures on thermal tolerances may increase, however, with the loss of buffering microhabitats and increased frequency of extreme temperatures expected under future habitat degradation and climate warming. Abstract in Spanish is available with online material. 
    more » « less
  3. Reptile-associated human salmonellosis cases have increased recently in the United States. It is not uncommon to find healthy chelonians shedding Salmonella enterica . The rate and frequency of bacterial shedding are not fully understood, and most studies have focused on captive vs. free-living chelonians and often in relation to an outbreak. Their ecology and significance as sentinels are important to understanding Salmonella transmission. In 2012–2013, Salmonella prevalence was determined for free-living aquatic turtles in man-made ponds in Clarke and Oconee Counties, in northern Georgia (USA) and the correlation between species, basking ecology, demographics (age/sex), season, or landcover with prevalence was assessed. The genetic relatedness between turtle and archived, human isolates, as well as, other archived animal and water isolates reported from this study area was examined. Salmonella was isolated from 45 of 194 turtles (23.2%, range 14–100%) across six species. Prevalence was higher in juveniles (36%) than adults (20%), higher in females (33%) than males (18%), and higher in bottom-dwelling species (31%; common and loggerhead musk turtles, common snapping turtles) than basking species (15%; sliders, painted turtles). Salmonella prevalence decreased as forest cover, canopy cover, and distance from roads increased. Prevalence was also higher in low-density, residential areas that have 20–49% impervious surface. A total of 9 different serovars of two subspecies were isolated including 3 S. enterica subsp. arizonae and 44 S. enterica subsp. enterica (two turtles had two serotypes isolated from each). Among the S. enterica serovars, Montevideo ( n = 13) and Rubislaw ( n = 11) were predominant. Salmonella serovars Muenchen, Newport, Mississippi, Inverness, Brazil, and Paratyphi B. var L(+) tartrate positive (Java) were also isolated. Importantly, 85% of the turtle isolates matched pulsed-field gel electrophoresis patterns of human isolates, including those reported from Georgia. Collectively, these results suggest that turtles accumulate Salmonella present in water bodies, and they may be effective sentinels of environmental contamination. Ultimately, the Salmonella prevalence rates in wild aquatic turtles, especially those strains shared with humans, highlight a significant public health concern. 
    more » « less
  4. Juveniles of marine species, such as sea turtles, are often understudied in movement ecology. To determine dispersal patterns and release effects, we released 40 satellite-tagged juvenile head-started green turtles (Chelonia mydas, 1–4 years) from two separate locations (January and July 2023) off the coast of the Cayman Islands. A statistical model and vector plots were used to determine drivers of turtle directional swimming persistence and the role of ocean current direction. More than half (N = 22) effectively dispersed in 6–22 days from the islands to surrounding areas. The January turtles radiated out (185–1138 km) in distinct directions in contrast to the northward dispersal of the July turtles (27–396 km). Statistical results and vector plots supported that daily swimming persistence increased towards the end of tracks and near coastal regions, with turtles largely swimming in opposition to ocean currents. These results demonstrate that captive-reared juvenile greens have the ability to successfully navigate towards key coastal developmental habitats. Differences in dispersal (January vs. July) further support the importance of release timing and location. Our results inform conservation of the recovering Caymanian green turtles and we advise on how our methods can be improved and modified for future sea turtle and juvenile movement ecology studies. 
    more » « less
  5. Summary Rising temperatures are influencing forests on many scales, with potentially strong variation vertically across forest strata. Using published research and new analyses, we evaluate how microclimate and leaf temperatures, traits, and gas exchange vary vertically in forests, shaping tree, and ecosystem ecology. In closed‐canopy forests, upper canopy leaves are exposed to the highest solar radiation and evaporative demand, which can elevate leaf temperature (Tleaf), particularly when transpirational cooling is curtailed by limited stomatal conductance. However, foliar traits also vary across height or light gradients, partially mitigating and protecting against the elevation of upper canopyTleaf. Leaf metabolism generally increases with height across the vertical gradient, yet differences in thermal sensitivity across the gradient appear modest. Scaling from leaves to trees, canopy trees have higher absolute metabolic capacity and growth, yet are more vulnerable to drought and damagingTleafthan their smaller counterparts, particularly under climate change. By contrast, understory trees experience fewer extreme highTleaf's but have fewer cooling mechanisms and thus may be strongly impacted by warming under some conditions, particularly when exposed to a harsher microenvironment through canopy disturbance. As the climate changes, integrating the patterns and mechanisms reviewed here into models will be critical to forecasting forest–climate feedback. 
    more » « less