skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on March 22, 2026

Title: Free‐space Optical Computing Systems
Abstract Free‐space optical systems are emerging as a hardware platform for high‐throughput and energy‐efficient computing. In this review, the pioneering works are first introduced to lay the foundation for the principles and architectures of systems. The modern hardware implementations of two types of optical computing systems, matrix, and vector multiplication systems and diffractive optical neural network systems, are covered from material, device, and system perspectives. Further, the system deployment to various applications is also discussed. This review serves as an introduction and guideline to the current progress of developing and utilizing free‐space optical computing systems in various domains.  more » « less
Award ID(s):
2316627 2428520
PAR ID:
10597743
Author(s) / Creator(s):
;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Annalen der Physik
ISSN:
0003-3804
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The incorporation of high‐performance optoelectronic devices into photonic neuromorphic processors can substantially accelerate computationally intensive matrix multiplication operations in machine learning (ML) algorithms. However, the conventional designs of individual devices and system are largely disconnected, and the system optimization is limited to the manual exploration of a small design space. Here, a device‐system end‐to‐end design methodology is reported to optimize a free‐space optical general matrix multiplication (GEMM) hardware accelerator by engineering a spatially reconfigurable array made from chalcogenide phase change materials. With a highly parallelized integrated hardware emulator with experimental information, the design of unit device to directly optimize GEMM calculation accuracy is achieved by exploring a large parameter space through reinforcement learning algorithms, including deep Q‐learning neural network, Bayesian optimization, and their cascaded approach. The algorithm‐generated physical quantities show a clear correlation between system performance metrics and device specifications. Furthermore, physics‐aware training approaches are employed to deploy optimized hardware to the tasks of image classification, materials discovery, and a closed‐loop design of optical ML accelerators. The demonstrated framework offers insights into the end‐to‐end and co‐design of optoelectronic devices and systems with reduced human supervision and domain knowledge barriers. 
    more » « less
  2. Abstract Solving partial differential equations (PDEs) is the cornerstone of scientific research and development. Data-driven machine learning (ML) approaches are emerging to accelerate time-consuming and computation-intensive numerical simulations of PDEs. Although optical systems offer high-throughput and energy-efficient ML hardware, their demonstration for solving PDEs is limited. Here, we present an optical neural engine (ONE) architecture combining diffractive optical neural networks for Fourier space processing and optical crossbar structures for real space processing to solve time-dependent and time-independent PDEs in diverse disciplines, including Darcy flow equation, the magnetostatic Poisson’s equation in demagnetization, the Navier-Stokes equation in incompressible fluid, Maxwell’s equations in nanophotonic metasurfaces, and coupled PDEs in a multiphysics system. We numerically and experimentally demonstrate the capability of the ONE architecture, which not only leverages the advantages of high-performance dual-space processing for outperforming traditional PDE solvers and being comparable with state-of-the-art ML models but also can be implemented using optical computing hardware with unique features of low-energy and highly parallel constant-time processing irrespective of model scales and real-time reconfigurability for tackling multiple tasks with the same architecture. The demonstrated architecture offers a versatile and powerful platform for large-scale scientific and engineering computations. 
    more » « less
  3. null (Ed.)
    Abstract Deep neural networks (DNNs) have substantial computational requirements, which greatly limit their performance in resource-constrained environments. Recently, there are increasing efforts on optical neural networks and optical computing based DNNs hardware, which bring significant advantages for deep learning systems in terms of their power efficiency, parallelism and computational speed. Among them, free-space diffractive deep neural networks (D 2 NNs) based on the light diffraction, feature millions of neurons in each layer interconnected with neurons in neighboring layers. However, due to the challenge of implementing reconfigurability, deploying different DNNs algorithms requires re-building and duplicating the physical diffractive systems, which significantly degrades the hardware efficiency in practical application scenarios. Thus, this work proposes a novel hardware-software co-design method that enables first-of-its-like real-time multi-task learning in D 2 2NNs that automatically recognizes which task is being deployed in real-time. Our experimental results demonstrate significant improvements in versatility, hardware efficiency, and also demonstrate and quantify the robustness of proposed multi-task D 2 NN architecture under wide noise ranges of all system components. In addition, we propose a domain-specific regularization algorithm for training the proposed multi-task architecture, which can be used to flexibly adjust the desired performance for each task. 
    more » « less
  4. This review explores the intersection of bio-plausible artificial intelligence in the form of spiking neural networks (SNNs) with the analog in-memory computing (IMC) domain, highlighting their collective potential for low-power edge computing environments. Through detailed investigation at the device, circuit, and system levels, we highlight the pivotal synergies between SNNs and IMC architectures. Additionally, we emphasize the critical need for comprehensive system-level analyses, considering the inter-dependencies among algorithms, devices, circuit, and system parameters, crucial for optimal performance. An in-depth analysis leads to the identification of key system-level bottlenecks arising from device limitations, which can be addressed using SNN-specific algorithm–hardware co-design techniques. This review underscores the imperative for holistic device to system design-space co-exploration, highlighting the critical aspects of hardware and algorithm research endeavors for low-power neuromorphic solutions. 
    more » « less
  5. Diffractive optical neural networks (DONNs) are emerging as high‐throughput and energy‐efficient hardware platforms to perform all‐optical machine learning (ML) in machine vision systems. However, the current demonstrated applications of DONNs are largely image classification tasks, which undermine the prospect of developing and utilizing such hardware for other ML applications. Herein, the deployment of an all‐optical reconfigurable DONNs system for scientific computing is demonstrated numerically and experimentally, including guiding two‐dimensional quantum material synthesis, predicting the properties of two‐dimensional quantum materials and small molecular cancer drugs, predicting the device response of nanopatterned integrated photonic power splitters, and the dynamic stabilization of an inverted pendulum with reinforcement learning. Despite a large variety of input data structures, a universal feature engineering approach is developed to convert categorical input features to images that can be processed in the DONNs system. The results open up new opportunities for employing DONNs systems for a broad range of ML applications. 
    more » « less