Optical and optoelectronic approaches of performing matrix–vector multiplication (MVM) operations have shown the great promise of accelerating machine learning (ML) algorithms with unprecedented performance. The incorporation of nanomaterials into the system can further improve the device and system performance thanks to their extraordinary properties, but the nonuniformity and variation of nanostructures in the macroscopic scale pose severe limitations for large‐scale hardware deployment. Here, a new optoelectronic architecture is presented, consisting of spatial light modulators and tunable responsivity photodetector arrays made from graphene to perform MVM. The ultrahigh carrier mobility of graphene, high‐power‐efficiency electro‐optic control, and extreme parallelism suggest ultrahigh data throughput and ultralow energy consumption. Moreover, a methodology of performing accurate calculations with imperfect components is developed, laying the foundation for scalable systems. Finally, a few representative ML algorithms are demonstrated, including singular value decomposition, support vector machine, and deep neural networks, to show the versatility and generality of the platform.
more »
« less
Device‐System End‐to‐End Design of Photonic Neuromorphic Processor Using Reinforcement Learning
Abstract The incorporation of high‐performance optoelectronic devices into photonic neuromorphic processors can substantially accelerate computationally intensive matrix multiplication operations in machine learning (ML) algorithms. However, the conventional designs of individual devices and system are largely disconnected, and the system optimization is limited to the manual exploration of a small design space. Here, a device‐system end‐to‐end design methodology is reported to optimize a free‐space optical general matrix multiplication (GEMM) hardware accelerator by engineering a spatially reconfigurable array made from chalcogenide phase change materials. With a highly parallelized integrated hardware emulator with experimental information, the design of unit device to directly optimize GEMM calculation accuracy is achieved by exploring a large parameter space through reinforcement learning algorithms, including deep Q‐learning neural network, Bayesian optimization, and their cascaded approach. The algorithm‐generated physical quantities show a clear correlation between system performance metrics and device specifications. Furthermore, physics‐aware training approaches are employed to deploy optimized hardware to the tasks of image classification, materials discovery, and a closed‐loop design of optical ML accelerators. The demonstrated framework offers insights into the end‐to‐end and co‐design of optoelectronic devices and systems with reduced human supervision and domain knowledge barriers.
more »
« less
- PAR ID:
- 10383365
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Laser & Photonics Reviews
- Volume:
- 17
- Issue:
- 2
- ISSN:
- 1863-8880
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Most modern commodity imaging systems we use directly for photography—or indirectly rely on for downstream applications—employ optical systems of multiple lenses that must balance deviations from perfect optics, manufacturing constraints, tolerances, cost, and footprint. Although optical designs often have complex interactions with downstream image processing or analysis tasks, today’s compound optics are designed in isolation from these interactions. Existing optical design tools aim to minimize optical aberrations, such as deviations from Gauss’ linear model of optics, instead of application-specific losses, precluding joint optimization with hardware image signal processing (ISP) and highly parameterized neural network processing. In this article, we propose an optimization method for compound optics that lifts these limitations. We optimize entire lens systems jointly with hardware and software image processing pipelines, downstream neural network processing, and application-specific end-to-end losses. To this end, we propose a learned, differentiable forward model for compound optics and an alternating proximal optimization method that handles function compositions with highly varying parameter dimensions for optics, hardware ISP, and neural nets. Our method integrates seamlessly atop existing optical design tools, such as Zemax . We can thus assess our method across many camera system designs and end-to-end applications. We validate our approach in an automotive camera optics setting—together with hardware ISP post processing and detection—outperforming classical optics designs for automotive object detection and traffic light state detection. For human viewing tasks, we optimize optics and processing pipelines for dynamic outdoor scenarios and dynamic low-light imaging. We outperform existing compartmentalized design or fine-tuning methods qualitatively and quantitatively, across all domain-specific applications tested.more » « less
-
Abstract Free‐space optical systems are emerging as a hardware platform for high‐throughput and energy‐efficient computing. In this review, the pioneering works are first introduced to lay the foundation for the principles and architectures of systems. The modern hardware implementations of two types of optical computing systems, matrix, and vector multiplication systems and diffractive optical neural network systems, are covered from material, device, and system perspectives. Further, the system deployment to various applications is also discussed. This review serves as an introduction and guideline to the current progress of developing and utilizing free‐space optical computing systems in various domains.more » « less
-
The past decade has witnessed the rising dominance of deep learning and artificial intelligence in a wide range of applications. In particular, the ocean of wireless smartphones and IoT devices continue to fuel the tremendous growth of edge/cloudbased machine learning (ML) systems including image/speech recognition and classification. To overcome the infrastructural barrier of limited network bandwidth in cloud ML, existing solutions have mainly relied on traditional compression codecs such as JPEG that were historically engineered for humanend users instead of ML algorithms. Traditional codecs do not necessarily preserve features important to ML algorithms under limited bandwidth, leading to potentially inferior performance. This work investigates application-driven optimization of programmable commercial codec settings for networked learning tasks such as image classification. Based on the foundation of variational autoencoders (VAEs), we develop an end-to-end networked learning framework by jointly optimizing the codec and classifier without reconstructing images for given data rate (bandwidth). Compared with standard JPEG codec, the proposed VAE joint compression and classification framework achieves classification accuracy improvement by over 10% and 4%, respectively, for CIFAR-10 and ImageNet-1k data sets at data rate of 0.8 bpp. Our proposed VAE-based models show 65%99% reductions in encoder size, 1.5 13.1 improvements in inference speed and 25%99% savings in power compared to baseline models. We further show that a simple decoder can reconstruct images with sufficient quality without compromising classification accuracy.more » « less
-
CRYSTAL-Kyber (Kyber) is one of the post-quantum cryptography (PQC) key-encapsulation mechanism (KEM) schemes selected during the standardization process. This paper addresses optimization for Kyber architecture with respect to latency and throughput constraints. Specifically, matrix-vector multiplication and number theoretic transform (NTT)-based polynomial multiplication are critical operations and bottle-necks that require optimization. To address this challenge, we propose an algorithm and hardware co-design approach to systematically optimize matrix-vector multiplication and NTT-based polynomial multiplication by employing a novel sub-structure sharing technique in order to reduce computational complexity, i.e., the number of modular multiplications and modular additions/subtractions consumed. The sub-structure sharing approach is inspired by prior fast parallel approaches based on polyphase decomposition. The proposed efficient feed-forward architecture achieves high speed, low latency, and full utilization of all hardware components, which can significantly enhance the overall efficiency of the Kyber scheme. The FPGA implementation results show that our proposed design, using the fast two-parallel structure, leads to an approximate reduction of 90% in execution time (μs) , along with a 66× improvement in throughput performance.more » « less
An official website of the United States government
