Lignin, an abundant and renewable biopolymer, has gained significant attention as a sustainable modifier and building block in polymeric materials. Recent advancements highlight its potential to tailor mechanical, thermal, and barrier properties of polymers while offering a greener alternative to petroleum-based additives. This review provides an updated perspective on the incorporation of lignin into various polymer matrices, focusing on lignin modification techniques, structure–property relationships, and emerging applications. Special emphasis is given to recent innovations in lignin functionalization and its role in developing high-performance, biodegradable, and recyclable materials such as polyurethanes, epoxy resins, phenol-formaldehyde resins, lignin-modified composites, and lignin-based films, coatings, elastomers, and adhesives. These lignin-based materials are gaining attention for potential applications in construction, automated industries, packaging, textiles, wastewater treatment, footwear, supporting goods, automobiles, printing rollers, sealants, and binders.
more »
« less
High-Performance Resin Formulations with Ozone-Pretreated Corn Cob Lignin and Lysine
Non-toxic resins formulated with renewable components have been receiving increased attention as sustainable alternatives to petroleum-based resins. In this work, we demonstrate a new class of lignin-amino acid (LA) resins, formulated with non-toxic components that are abundant and can be renewably sourced from field leftovers (corn cobs) and lysine (from bio-based sugars). NMR (1H, 31P, 13C-1H HSQC, 15N-1H HSQC, and 15N-1H HMBC), FTIR, thermogravimetric, gel permeation chromatography and elemental analyses provide insights into the physicochemical properties of the resins, including the presence of LA linkages such as C-N cross linking. The LA resin creates strong bonds between pieces of wood, metals (aluminum and stainless steel) and plastics. Internal bond strengths (IBS) of balsa wood and medium density fiberboard specimens glued with LA resins, measured using an Instron instrument, were comparable to those bonded with commercial polyurethane (PU) and polyvinyl acetate (PVAc) resins. Resins prepared with ozone-pretreated lignin have significantly larger molar masses and display increased bond strengths with glued substates as inferred from IBS measurements. This is attributed to the creation of reactive oxygen-based functionalities in the lignin upon ozone pretreatment. Lignin-amino acid resins thus show promise as a feasible and sustainable alternative to petroleum-based resins.
more »
« less
- Award ID(s):
- 1919267
- PAR ID:
- 10597855
- Publisher / Repository:
- American Chemical Society
- Date Published:
- Journal Name:
- ACS Sustainable Chemistry & Engineering
- Volume:
- 12
- Issue:
- 38
- ISSN:
- 2168-0485
- Page Range / eLocation ID:
- 14305 to 14318
- Subject(s) / Keyword(s):
- Corn cob lignin, acetosolv extraction, ozone treated lignin, lysine, lignin-amino acid resins, tensile strength.
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Lignin is the most abundant aromatic biopolymer and is the sustainable feedstock most likely to supplant petroleum-derived aromatics and downstream products. Rich in functional groups, lignin is largely peerless in its potential for chemical modification towards attaining target properties. Lignin’s crosslinked network structure can be exploited in composites to endow them with remarkable strength, as exemplified in timber and other structural elements of plants. Yet lignin may also be depolymerized, modified, or blended with other polymers. This review focuses on substituting petrochemicals with lignin derivatives, with a particular focus on applications more significant in terms of potential commercialization volume, including polyurethane, phenol-formaldehyde resins, lignin-based carbon fibers, and emergent melt-processable waste-derived materials. This review will illuminate advances from the last eight years in the prospective utilization of such lignin-derived products in a range of application such as adhesives, plastics, automotive components, construction materials, and composites. Particular technical issues associated with lignin processing and emerging alternatives for future developments are discussed.more » « less
-
When fractionating corn cobs using the acetosolv process, the type of acid catalyst and their concentrations significantly affect the structure of the resulting lignin fraction as well as its catalytic deconstruction to aromatic monomers. Gel permeation chromatography (GPC) results show that the average molecular weight (~55,750 g/mol) of the sulfuric acid-pretreated corn cob lignin (H2SO4-CCL) is much greater than that (~39,400 g/mol) of hydrochloric acid-pretreated corn cob lignin (HCl-CCL) at similar acid concentrations, suggesting increased condensation reactions when using sulfuric acid. Further, a significant amount of bound sulfur content (~2900 ppm) was measured in H2SO4-CCL. This sulfur presence poisons the Pd/C catalyst used in the downstream catalytic conversion of the lignin in methanol to form monolignols and derivatives thereof. X-ray photoelectron spectroscopy (XPS) results reveal that both sulfide and sulfate groups are formed with the surface Pd sites, rendering them inactive and amenable to possible leaching. Elemental mapping of spent catalysts using scanning transmission electron microscopy-high angle annular dark field (STEM-HAADF)/energy dispersive x-ray (EDX) technique corroborate overlapping presence of Pd, S and O in the micrographs. 2D 1H/13C HSQC nuclear magnetic resonance (NMR) spectroscopy reveals that the use of H2SO4 preserves aryl ether linkages only at low concentrations. In contrast, the use of HCl in the acetosolv process preserves such linkages even at high concentrations while also mitigating sulfur poisoning of the Pd/C catalyst. Consequently, the yield of aromatic monomers during catalytic fractionation of HCl-CCL was doubled compared to H2SO4-CCL at identical operating conditions.more » « less
-
Abstract Traditionally, resins and hardeners are produced by chemical and petroleum industries. These industries make use of non-renewable energy resources like fossil fuels for manufacturing the resins and curing agents. In addition, most of the conventional curing agents used in epoxy resins are highly noxious in nature causing skin allergies and asthma. The green epoxy resin is capable of reducing these toxic effects but have few shortcomings including its cost and the mechanical performance of cured epoxy resin. On the other hand, there is a dearth of investigation in the evolution of green or sustainable curing agents known as bio-binders. This paper presents the prediction of mechanical properties by replacement of conventional curing agent with amine derivative synthesized from bio-degradable resource in a thermoset epoxy resin system. The properties are predicted by molecular dynamics simulations using Materials Studio Software. Graphical Abstractmore » « less
-
The movement to transfer from petroleum-based products and materials to renewables does not necessarily have to bypass the use of oil. A new type of “black-gold” is readily abundant from the earth’s most abundant source of aromatic carbon: lignin. While fractionation of petroleum yields fuels and chemicals for a diverse set of industries, lignin fractionation using targeted catalysts has demonstrated the ability to generate monomers and oligomers rich in functional groups for polymer synthesis. This study explores the use of lignin-oil, generated from reductive catalytic fractionation of popular wood, to a hydroxyl-rich mixture of aromatics that is used to synthesize a thermoplastic non-isocyanate polyurethane. The lignin-oil is first converted to a cyclocarbonated derivative using a benign synthetic sequence and further polymerized with a diamine to yield the non-isocyanate TPU. While more work is underway to optimize the reaction conditions and meet typical mechanical properties of commercial materials, initial analysis shows thermoplastic behavior and flexible properties consistent with traditional thermoplastic polyurethanes.more » « less
An official website of the United States government

