Abstract Under synchronized conidiation, over 2500 gene products show differential expression, including transcripts for bothbrlAandabaA, which increase steadily over time. In contrast, during wall-stress induced by the echinocandin micafungin, thebrlAtranscript is upregulated while theabaAtranscript is not. In addition, whenmpkA(last protein kinase in the cell wall integrity signaling pathway) is deleted,brlAexpression is not upregulated in response to wall stress. Together, these data imply BrlA may play a role in a cellular stress-response which is independent of the canonical BrlA-mediated conidiation pathway. To test this hypothesis, we performed a genome-wide search and found 332 genes with a putative BrlA response element (BRE) in their promoter region. From this set, we identified 28 genes which were differentially expressed in response to wall-stress, but not during synchronized conidiation. This set included seven gene products whose homologues are involved in transmembrane transport and 14 likely to be involved in secondary metabolite biosynthesis. We selected six of these genes for further examination and find that they all show altered expression behavior in thebrlAdeletion strain. Together, these data support the idea that BrlA plays a role in various biological processes outside asexual development. ImportanceTheAspergillus nidulanstranscription factor BrlA is widely accepted as a master regulator of conidiation. Here, we show that in addition to this function BrlA appears to play a role in responding to cell-wall stress. We note that this has not been observed outsideA. nidulans. Further, BrlA-mediated conidiation is highly conserved acrossAspergillusspecies, so this new functionality is likely relevant in otherAspergilli. We identified several transmembrane transporters that have altered transcriptional responses to cell-wall stress in abrlAdeletion mutant. Based on our observation, together with what is known about thebrlAgene locus’ regulation, we identifybrlAβas the likely intermediary in function ofbrlAin the response to cell-wall stress.
more »
« less
This content will become publicly available on March 3, 2026
Synthetic Generation of Dynamic Omics Data Demonstrates Aspergillus nidulans BrlA Paradoxical Wall Stress Response
Abstract We propose a method to generate additional dynamic omics trajectories which could support pathway analysis methods such as enrichment analysis, genetic programming, and machine learning. Using long short-term memory neural networks, we can effectively predict an organism’s dynamic response to a stimulus based on an initial dataset with relatively few samples. We present both anin silicoproof of principle, based on a model that simulates viral propagation, and anin vitrocase study, tracking the dynamics ofAspergillus nidulans’BrlA transcript in response to antifungal agent micafungin. Oursilicoexperiment was conducted using a highly noisy dataset with only 25 replicates. This proof of principle shows that this method can operate on biological datasets, which often have high variance and few replicates. Ourin silicovalidation achieved a maximum R2value of approximately 0.95 on our highly noisy, stochastically simulated data. Ourin vitrovalidation achieves an R2of 0.71. As with any machine learning application, this method will work better with more data; however, both of our applications attain acceptable validation metrics with very few biological replicates. Thein vitroexperiments also revealed a novel paradoxical dose-response effect: transcriptional upregulation byAspergillus nidulansBrlA is highest at an intermediate dose of 10 ng/mL and is reduced at both higher and lower concentrations of micafungin.
more »
« less
- Award ID(s):
- 2006189
- PAR ID:
- 10597856
- Publisher / Repository:
- bioRxiv
- Date Published:
- Format(s):
- Medium: X
- Institution:
- bioRxiv
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Fungal cell wall receptors relay messages about the state of the cell wall to the nucleus through the Cell Wall Integrity Signaling (CWIS) pathway. The ultimate role of the CWIS pathway is to coordinate repair of cell wall damage and to restore normal hyphal growth. Echinocandins such as micafungin represent a class of antifungals that trigger cell wall damage by affecting synthesis of β-glucans. To obtain a better understanding of the dynamics of the CWIS response and its multiple effects, we have coupled dynamic transcriptome analysis with morphological studies of Aspergillus nidulans hyphae in responds to micafungin. Our results reveal that expression of the master regulator of asexual development, BrlA, is induced by micafungin exposure. Further study showed that micafungin elicits morphological changes consistent with microcycle conidiation and that this effect is abolished in the absence of MpkA. Our results suggest that microcycle conidiation may be a general response to cell wall perturbation which in some cases would enable fungi to tolerate or survive otherwise lethal damage.more » « less
-
ABSTRACT This study explores how suppressing asexual development inAspergillus nidulansenhances the mechanical properties of mycelial materials. Using four aconidial mutants(ΔbrlA, ΔflbA, ΔfluG, andfadAG42R) that lack asexual development and a control strain (A28) that undergoes typical asexual development, we found that the absence of asexual development significantly improves mechanical strength. All mutants exhibited higher ultimate tensile strength (UTS) than the control, with ΔfluGand ΔbrlA(fluffy nonsporulating, FNS phenotype) showing the highest UTS. Additionally,fadAG42Rand ΔflbA(fluffy autolytic dominant, FAD phenotype) demonstrated significantly higher strain at failure (SF), linked to increased autolysis and lower dry cell mass compared to the control and FNS mutants. Solid-state NMR analysis revealed that autolysis in FAD mutants disrupts galactofuranose-related metabolic processes, altering cell wall composition and contributing to higher elasticity. These findings suggest that suppressing asexual development enhances mycelial material strength, while autolysis mechanisms influence elasticity. This research highlights the potential for genetic manipulation in fungi to engineer advanced mycelial-based materials with tailored mechanical properties.more » « less
-
Abstract Waste plastics represent major environmental and economic burdens due to their ubiquity, slow breakdown rates, and inadequacy of current recycling routes. Polyethylenes are particularly problematic, because they lack robust recycling approaches despite being the most abundant plastics in use today. We report a novel chemical and biological approach for the rapid conversion of polyethylenes into structurally complex and pharmacologically active compounds. We present conditions for aerobic, catalytic digestion of polyethylenes collected from post‐consumer and oceanic waste streams, creating carboxylic diacids that can then be used as a carbon source by the fungusAspergillus nidulans. As a proof of principle, we have engineered strains ofA. nidulansto synthesize the fungal secondary metabolites asperbenzaldehyde, citreoviridin, and mutilin when grown on these digestion products. This hybrid approach considerably expands the range of products to which polyethylenes can be upcycled.more » « less
-
Mitchell, Aaron P. (Ed.)Aspergillus fumigatus causes a range of human and animal diseases collectively known as aspergillosis. A . fumigatus possesses and expresses a range of genetic determinants of virulence, which facilitate colonisation and disease progression, including the secretion of mycotoxins. Gliotoxin (GT) is the best studied A . fumigatus mycotoxin with a wide range of known toxic effects that impair human immune cell function. GT is also highly toxic to A . fumigatus and this fungus has evolved self-protection mechanisms that include (i) the GT efflux pump GliA, (ii) the GT neutralising enzyme GliT, and (iii) the negative regulation of GT biosynthesis by the bis -thiomethyltransferase GtmA. The transcription factor (TF) RglT is the main regulator of GliT and this GT protection mechanism also occurs in the non-GT producing fungus A . nidulans . However, the A . nidulans genome does not encode GtmA and GliA. This work aimed at analysing the transcriptional response to exogenous GT in A . fumigatus and A . nidulans , two distantly related Aspergillus species, and to identify additional components required for GT protection. RNA-sequencing shows a highly different transcriptional response to exogenous GT with the RglT-dependent regulon also significantly differing between A . fumigatus and A . nidulans . However, we were able to observe homologs whose expression pattern was similar in both species (43 RglT-independent and 11 RglT-dependent). Based on this approach, we identified a novel RglT-dependent methyltranferase, MtrA, involved in GT protection. Taking into consideration the occurrence of RglT-independent modulated genes, we screened an A . fumigatus deletion library of 484 transcription factors (TFs) for sensitivity to GT and identified 15 TFs important for GT self-protection. Of these, the TF KojR, which is essential for kojic acid biosynthesis in Aspergillus oryzae , was also essential for virulence and GT biosynthesis in A . fumigatus , and for GT protection in A . fumigatus , A . nidulans , and A . oryzae . KojR regulates rglT , gliT , gliJ expression and sulfur metabolism in Aspergillus species. Together, this study identified conserved components required for GT protection in Aspergillus species.more » « less
An official website of the United States government
