This work models the costs and benefits of per- sonal information sharing, or self-disclosure, in online social networks as a networked disclosure game. In a networked population where edges rep- resent visibility amongst users, we assume a leader can influence network structure through content promotion, and we seek to optimize social wel- fare through network design. Our approach con- siders user interaction non-homogeneously, where pairwise engagement amongst users can involve or not involve sharing personal information. We prove that this problem is NP-hard. As a solution, we develop a Mixed-integer Linear Programming algorithm, which can achieve an exact solution, and also develop a time-efficient heuristic algo- rithm that can be used at scale. We conduct nu- merical experiments to demonstrate the properties of the algorithms and map theoretical results to a dataset of posts and comments in 2020 and 2021 in a COVID-related Subreddit community where privacy risks and sharing tradeoffs were particularly pronounced. 
                        more » 
                        « less   
                    
                            
                            Toward Context-Aware Privacy Enhancing Technologies for Online Self-Disclosure
                        
                    
    
            Voluntary sharing of personal information is at the heart of user engagement on social media and central to platforms' business models. From the users' perspective, so-called self-disclosure is closely connected with both privacy risks and social rewards. Prior work has studied contextual influences on self-disclosure, from platform affordances and interface design to user demographics and perceived social capital. Our work takes a mixed-methods approach to understand the contextual information which might be integrated in the development of privacy-enhancing technologies. Through observational study of several Reddit communities, we explore the ways in which topic of discussion, group norms, peer effects, and audience size are correlated with personal information sharing. We then build and test a prototype privacy-enhancing tool that exposes these contextual factors. Our work culminates in a browser extension that automatically detects instances of self-disclosure in Reddit posts at the time of posting and provides additional context to users before they post to support enhanced privacy decision-making. We share this prototype with social media users, solicit their feedback, and outline a path forward for privacy-enhancing technologies in this space. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2247723
- PAR ID:
- 10597861
- Publisher / Repository:
- AAAI
- Date Published:
- Journal Name:
- Proceedings of the AAAI Conference on Human Computation and Crowdsourcing
- Volume:
- 12
- ISSN:
- 2769-1330
- Page Range / eLocation ID:
- 44 to 54
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            We investigate relationships between online self-disclosure and received social support and user engagement during the COVID-19 crisis. We crawl a total of 2,399 posts and 29,851 associated comments from the r/COVID19_support subreddit and manually extract fine-grained personal information categories and types of social support sought from each post. We develop a BERT-based ensemble classifier to automatically identify types of support offered in users’ comments. We then analyze the effect of personal information sharing and posts’ topical, lexical, and sentiment markers on the acquisition of support and five interaction measures (submission scores, the number of comments, the number of unique commenters, the length and sentiments of comments). Our findings show that: (1) users were more likely to share their age, education, and location information when seeking both informational and emotional support as opposed to pursuing either one; (2) while personal information sharing was positively correlated with receiving informational support when requested, it did not correlate with emotional support; (3) as the degree of self-disclosure increased, information support seekers obtained higher submission scores and longer comments, whereas emotional support seekers’ self-disclosure resulted in lower submission scores, fewer comments, and fewer unique commenters; and (4) post characteristics affecting audience response differed significantly based on types of support sought by post authors. These results provide empirical evidence for the varying effects of self-disclosure on acquiring desired support and user involvement online during the COVID-19 pandemic. Furthermore, this work can assist support seekers hoping to enhance and prioritize specific types of social support and user engagement.more » « less
- 
            null (Ed.)Data and information privacy is a major concern of today’s world. More specifically, users’ digital privacy has become one of the most important issues to deal with, as advancements are being made in information sharing technology. An increasing number of users are sharing information through text messages, emails, and social media without proper awareness of privacy threats and their consequences. One approach to prevent the disclosure of private information is to identify them in a conversation and warn the dispatcher before the conveyance happens between the sender and the receiver. Another way of preventing information (sensitive) loss might be to analyze and sanitize a batch of offline documents when the data is already accumulated somewhere. However, automating the process of identifying user-centric privacy disclosure in textual data is challenging. This is because the natural language has an extremely rich form and structure with different levels of ambiguities. Therefore, we inquire after a potential framework that could bring this challenge within reach by precisely recognizing users’ privacy disclosures in a piece of text by taking into account - the authorship and sentiment (tone) of the content alongside the linguistic features and techniques. The proposed framework is considered as the supporting plugin to help text classification systems more accurately identify text that might disclose the author’s personal or private information.more » « less
- 
            null (Ed.)Abstract Smartphone location sharing is a particularly sensitive type of information disclosure that has implications for users’ digital privacy and security as well as their physical safety. To understand and predict location disclosure behavior, we developed an Android app that scraped metadata from users’ phones, asked them to grant the location-sharing permission to the app, and administered a survey. We compared the effectiveness of using self-report measures commonly used in the social sciences, behavioral data collected from users’ mobile phones, and a new type of measure that we developed, representing a hybrid of self-report and behavioral data to contextualize users’ attitudes toward their past location-sharing behaviors. This new type of measure is based on a reflective learning paradigm where individuals reflect on past behavior to inform future behavior. Based on data from 380 Android smartphone users, we found that the best predictors of whether participants granted the location-sharing permission to our app were: behavioral intention to share information with apps, the “FYI” communication style, and one of our new hybrid measures asking users whether they were comfortable sharing location with apps currently installed on their smartphones. Our novel, hybrid construct of self-reflection on past behavior significantly improves predictive power and shows the importance of combining social science and computational science approaches for improving the prediction of users’ privacy behaviors. Further, when assessing the construct validity of the Behavioral Intention construct drawn from previous location-sharing research, our data showed a clear distinction between two different types of Behavioral Intention: self-reported intention to use mobile apps versus the intention to share information with these apps. This finding suggests that users desire the ability to use mobile apps without being required to share sensitive information, such as their location. These results have important implications for cybersecurity research and system design to meet users’ location-sharing privacy needs.more » « less
- 
            Development of a comprehensive legal privacy framework in the United States should be based on identification of the common deficiencies of privacy policies. We attempt to delineate deficiencies by critically analyzing the privacy policies of mobile apps, application suites, social networks, Internet Service Providers, and Internet-of-Things devices. Whereas many studies have examined readability of privacy policies, few have specifically identified the information that should be provided in privacy policies but is not. Privacy legislation invariably starts a definition of personally identifiable information. We find that privacy policies’ definitions of personally identifiable information are far too restrictive, excluding information that does not itself identify a person but which can be used to reasonably identify a person, and excluding information paired with a device identifier which can be reasonably linked to a person. Legislation should define personally identifiable information to include such information, and should differentiate between information paired with a name versus information paired with a device identifier. Privacy legislation often excludes anonymous and de-identified information from notice and choice requirements. We find that privacy policies’ descriptions of anonymous and de-identified information are far too broad, including information paired with advertising identifiers. Computer science has repeatedly demonstrated that such information is reasonably linkable. Legislation should define these categories of information to align with technological abilities. Legislation should also not exempt de-identified information from notice requirements, to increase transparency. Privacy legislation relies heavily on notice requirements. We find that, because privacy policies’ disclosures of the uses of personal information are disconnected from their disclosures about the types of personal information collected, we are often unable to determine which types of information are used for which purposes. Often, we cannot determine whether location or web browsing history is used solely for functional purposes or also for advertising. Legislation should require the disclosure of the purposes for each type of personal information collected. We also find that, because privacy policies disclosures of sharing of personal information are disconnected from their disclosures about the types of personal information collected, we are often unable to determine which types of information are shared. Legislation should require the disclosure of the types of personal information shared. Finally, privacy legislation relies heavily on user choice. We find that free services often require the collection and sharing of personal information. As a result, users often have no choices. We find that whereas some paid services afford users a wide variety of choices, paid services in less competitive sectors often afford users few choices over use and sharing of personal information for purposes unrelated to the service. As a result, users are often unable to dictate which types of information they wish to allow to be shared, and which types they wish to allow to be used for advertising. Legislation should differentiate between take-it-or-leave it, opt-out, and opt-in approaches based on the type of use and on whether the information is shared. Congress should consider whether user choices should be affected by the presence of market power.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    