skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Fire Ant Social Chromosome Exerts a Major Influence on Genome Regulation
Abstract Supergenes underlying complex trait polymorphisms ensure that sets of coadapted alleles remain genetically linked. Despite their prevalence in nature, the mechanisms of supergene effects on genome regulation are poorly understood. In the fire ant Solenopsis invicta, a supergene containing over 500 individual genes influences trait variation in multiple castes to collectively underpin a colony level social polymorphism. Here, we present results of an integrative investigation of supergene effects on gene regulation. We present analyses of ATAC-seq data to investigate variation in chromatin accessibility by supergene genotype and STARR-seq data to characterize enhancer activity by supergene haplotype. Integration with gene co-expression analyses, newly mapped intact transposable elements (TEs), and previously identified copy number variants (CNVs) collectively reveals widespread effects of the supergene on chromatin structure, gene transcription, and regulatory element activity, with a genome-wide bias for open chromatin and increased expression in the presence of the derived supergene haplotype, particularly in regions that harbor intact TEs. Integrated consideration of CNVs and regulatory element divergence suggests each evolved in concert to shape the expression of supergene encoded factors, including several transcription factors that may directly contribute to the trans-regulatory footprint of a heteromorphic social chromosome. Overall, we show how genome structure in the form of a supergene has wide-reaching effects on gene regulation and gene expression.  more » « less
Award ID(s):
1754476 1755130 2105033
PAR ID:
10597933
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Molecular Biology and Evolution
Volume:
42
Issue:
6
ISSN:
0737-4038
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract BackgroundGenetic and epigenetic perturbation of cis-regulatory sequences can shift patterns of gene expression and result in novel phenotypes. Phased genome assemblies now enable the local dissection of linkages between cis-regulatory sequences, including their epigenetic state, and allele-specific gene expression to further characterize gene regulation and resulting phenotypes in heterozygous genomes. ResultsWe assembled a locally phased genome for a mandarin hybrid named ‘Fairchild’ to explore the molecular signatures of allele-specific gene expression. With local genome phasing, genes with allele-specific expression were paired with haplotype-specific chromatin states, including levels of chromatin accessibility, histone modifications, and DNA methylation. We found that 30% of variation in allele-specific expression could be attributed to haplotype associated factors, with allelic levels of chromatin accessibility and three histone modifications in gene bodies having the most influence. Structural variants in promoter regions were also associated with allele-specific expression, including specific enrichments of hAT and MULE-MuDR DNA transposon sequences. Integration of haplotype-resolved genetic and epigenetic landscapes with high-throughput phenotypic analysis of fruit traits in a panel of 154 accessions with mandarin and pummelo ancestry revealed that trait-associated variants were enriched in regions of open chromatin. Mining of trait-associated variants uncovered a Gypsy retrotransposon insertion in a gene that regulates potassium transport and may contribute to the reduction in fruit size that is observed in mandarins. Conclusions​​Using a locally phased assembly of a heterozygous cultivar of citrus, we dissected the interplay between genetic variants and molecular phenotypes to reveal cis-regulatory sequences with potential functional effects on phenotypes relevant for genetic improvement. 
    more » « less
  2. Gossmann, Toni (Ed.)
    Abstract Understanding and predicting the relationships between genotype and phenotype is often challenging, largely due to the complex nature of eukaryotic gene regulation. A step towards this goal is to map how phenotypic diversity evolves through genomic changes that modify gene regulatory interactions. Using the Prairie Rattlesnake (Crotalus viridis) and related species, we integrate mRNA-seq, proteomic, ATAC-seq and whole genome resequencing data to understand how specific evolutionary modifications to gene regulatory network components produce differences in venom gene expression. Through comparisons within and between species, we find a remarkably high degree of gene expression and regulatory network variation across even a shallow level of evolutionary divergence. We use these data to test hypotheses about the roles of specific trans-factors and cis-regulatory elements, how these roles may vary across venom genes and gene families, and how variation in regulatory systems drive diversity in venom phenotypes. Our results illustrate that differences in chromatin and genotype at regulatory elements play major roles in modulating expression. However, we also find that enhancer deletions, differences in transcription-factor expression, and variation in activity of the insulator protein CTCF also likely impact venom phenotypes. Our findings provide insight into the diversity and gene-specificity of gene regulatory features and highlight the value of comparative studies to link gene regulatory network variation to phenotypic variation. 
    more » « less
  3. Abstract BackgroundThe genetic information contained in the genome of an organism is organized in genes and regulatory elements that control gene expression. The genomes of multiple plants species have already been sequenced and the gene repertory have been annotated, however,cis-regulatory elements remain less characterized, limiting our understanding of genome functionality. These elements act as open platforms for recruiting both positive- and negative-acting transcription factors, and as such, chromatin accessibility is an important signature for their identification. ResultsIn this work we developed a transgenic INTACT [isolation of nuclei tagged in specific cell types] system in tetraploid wheat for nuclei purifications. Then, we combined the INTACT system together with the assay for transposase-accessible chromatin with sequencing [ATAC-seq] to identify open chromatin regions in wheat root tip samples. Our ATAC-seq results showed a large enrichment of open chromatin regions in intergenic and promoter regions, which is expected for regulatory elements and that is similar to ATAC-seq results obtained in other plant species. In addition, root ATAC-seq peaks showed a significant overlap with a previously published ATAC-seq data from wheat leaf protoplast, indicating a high reproducibility between the two experiments and a large overlap between open chromatin regions in root and leaf tissues. Importantly, we observed overlap between ATAC-seq peaks andcis-regulatory elements that have been functionally validated in wheat, and a good correlation between normalized accessibility and gene expression levels. ConclusionsWe have developed and validated an INTACT system in tetraploid wheat that allows rapid and high-quality nuclei purification from root tips. Those nuclei were successfully used to performed ATAC-seq experiments that revealed open chromatin regions in the wheat genome that will be useful to identify cis-regulatory elements. The INTACT system presented here will facilitate the development of ATAC-seq datasets in other tissues, growth stages, and under different growing conditions to generate a more complete landscape of the accessible DNA regions in the wheat genome. 
    more » « less
  4. A major goal in evolutionary biology and biomedicine is to understand the complex interactions between genetic variants, the epigenome, and gene expression. However, the causal relationships between these factors remain poorly understood. mSTARR-seq, a methylation-sensitive massively parallel reporter assay, is capable of identifying methylation-dependent regulatory activity at many thousands of genomic regions simultaneously and allows for the testing of causal relationships between DNA methylation and gene expression on a region-by-region basis. Here, we develop a multiplexed mSTARR-seq protocol to assay naturally occurring human genetic variation from 25 individuals from 10 localities in Europe and Africa. We identify 6957 regulatory elements in either the unmethylated or methylated state, and this set was enriched for enhancer and promoter chromatin annotations, as expected. The expression of 58% of these regulatory elements is modulated by methylation, which is generally associated with decreased transcription. Within our set of regulatory elements, we use allele-specific expression analyses to identify 8020 sites with genetic effects on gene regulation; further, we find that 42.3% of these genetic effects vary in direction or magnitude between methylated and unmethylated states. Sites exhibiting methylation-dependent genetic effects are enriched for GWAS and EWAS annotations, implicating them in human disease. Compared with data sets that assay DNA from a single European ancestry individual, our multiplexed assay is able to uncover more genetic effects and methylation-dependent genetic effects, highlighting the importance of including diverse genomes in assays that aim to understand gene regulatory processes. 
    more » « less
  5. Abstract The fire antSolenopsis invictaexists in two alternate social forms: monogyne nests contain a single reproductive queen and polygyne nests contain multiple reproductive queens. This colony‐level social polymorphism corresponds with individual differences in queen physiology, queen dispersal patterns and worker discrimination behaviours, all evidently regulated by an inversion‐based supergene that spans more than 13 Mb of a “social chromosome,” contains over 400 protein‐coding genes and rarely undergoes recombination. The specific mechanisms by which this supergene influences expression of the many distinctive features that characterize the alternate forms remain almost wholly unknown. To advance our understanding of these mechanisms, we explore the effects of social chromosome genotype and natal colony social form on gene expression in queens sampled as they embarked on nuptial flights, using RNA‐sequencing of brains and ovaries. We observe a large effect of natal social form, that is, of the social/developmental environment, on gene expression profiles, with similarly substantial effects of genotype, including: (a) supergene‐associated gene upregulation, (b) allele‐specific expression and (c) pronounced extra‐supergenetrans‐regulatory effects. These findings, along with observed spatial variation in differential and allele‐specific expression within the supergene region, highlight the complex gene regulatory landscape that emerged following divergence of the inversion‐mediatedSbhaplotype from its homologue, which presumably largely retained the ancestral gene order. The distinctive supergene‐associated gene expression trajectories we document at the onset of a queen’s reproductive life expand the known record of relevant molecular correlates of a complex social polymorphism and point to putative genetic factors underpinning the alternate social syndromes. 
    more » « less