skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on March 12, 2026

Title: A Deep Learning-Aided Workflow for Decoding the Stress Regime of Southern Nevada
Abstract The Rock Valley fault zone in southern Nevada has a notable history of seismic activity and is the site of a future direct comparison experiment of explosion and earthquake sources. This study aims to gain insight into regional tectonic processes by leveraging recent advances in seismic monitoring capabilities to elucidate the local stress regime. A crucial step in this investigation is the accurate determination of P-wave first-motion polarities, which play a vital role in resolving earthquake focal mechanisms of small earthquakes. We deploy a deep learning-based method for automatic determination of first-motion polarities to vastly expand the polarity dataset beyond what has been reviewed by human analysts. By the integrating P-wave polarities with new measurements of S/P amplitude ratios, we obtain robust focal mechanism estimates for 1306 earthquakes with a local magnitude of 1 and above occurring between 2010 and 2023 in southern Nevada. We then use the focal mechanism catalog to examine the regional stress orientation, confirming an overall trans-tensional stress regime with smaller scale complexities illuminated by individual earthquake sequences. These findings demonstrate how detailed analyses of small earthquakes can provide fundamental information for understanding earthquake processes in the region and inform future experiments at the Nevada National Security Site.  more » « less
Award ID(s):
2231705 2121666
PAR ID:
10598006
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Seismological Society of America
Date Published:
Journal Name:
Seismological Research Letters
ISSN:
0895-0695
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Earthquake focal mechanisms provide critical in-situ insights about the subsurface faulting geometry and stress state. For frequent small earthquakes (magnitude< 3.5), their focal mechanisms are routinely determined using first-arrival polarities picked on the vertical component of seismometers. Nevertheless, their quality is usually limited by the azimuthal coverage of the local seismic network. The emerging distributed acoustic sensing (DAS) technology, which can convert pre-existing telecommunication cables into arrays of strain/strain-rate meters, can potentially fill the azimuthal gap and enhance constraints on the nodal plane orientation through its long sensing range and dense spatial sampling. However, determining first-arrival polarities on DAS is challenging due to its single-component sensing and low signal-to-noise ratio for direct body waves. Here, we present a data-driven method that measures P-wave polarities on a DAS array based on cross-correlations between earthquake pairs. We validate the inferred polarities using the regional network catalog on two DAS arrays, deployed in California and each comprising ~ 5000 channels. We demonstrate that a joint focal mechanism inversion combining conventional and DAS polarity picks improves the accuracy and reduces the uncertainty in the focal plane orientation. Our results highlight the significant potential of integrating DAS with conventional networks for investigating high-resolution earthquake source mechanisms. 
    more » « less
  2. Abstract Earthquake focal mechanisms provide crucial information about subsurface fault geometry and stress orientations. Focal mechanisms are typically inferred through analysis of seismic radiation patterns, for example, using P-wave first-motion polarities, potentially in combination with S/P amplitude ratios, to identify nodal planes. The motivation for this procedure is well-founded, as P- and S-wave radiation patterns depend fundamentally on the fault orientation. However, in practice, S/P amplitude ratio measurements can be strongly influenced by factors that are unrelated to the source mechanism. In this study, I characterize several underappreciated issues with S/P amplitude ratio data that are relevant to focal mechanism inversion. The analysis combines synthetic tests with new waveform measurements from ∼64,000 ML≥1.0 earthquakes in Nevada and California. Key findings include that (1) the statistical distribution of S/P amplitude ratio data differs markedly in shape and width from the theoretical expectation, (2) S/P amplitude ratios decay systematically with source-station distance beyond ∼60 km or so, (3) this distance effect is more severe for smaller earthquakes than for larger ones, and (4) modifying the frequency band in which amplitudes are measured can shift the observed amplitude ratio distribution but does not significantly mitigate issues (1)–(3). Taken together, these findings indicate that S/P amplitude ratio measurements are influenced by differential path attenuation and signal-to-noise effects that are not accounted for with existing workflows. Using independent moment tensor solutions, I systematically test various strategies to incorporate S/P amplitude ratios into focal mechanism solutions. The best-performing strategies transform S/P amplitude data to better match the theoretical expectation. Overall, S/P amplitude ratio data appear helpful in improving a typical mechanism solution, but even with the best-performing strategies considered here, the inclusion of S/P amplitude ratio data is expected to hinder rather than improve the solution for a subset of events. 
    more » « less
  3. Abstract I present a high-precision earthquake relocation catalog and first-motion focal mechanisms before and during the 2019 Ridgecrest earthquake sequence in eastern California. I obtain phase arrivals, first-motion polarities, and waveform data from the Southern California Earthquake Data Center for more than 24,000 earthquakes with the magnitudes varying between −0.7 and 7.1 from 1 January to 31 July 2019. I first relocate all the earthquakes using phase arrivals through a previously developed 3D seismic-velocity model and then improve relative location accuracies using differential times from waveform cross correlation. The majority of the relocated seismicity is distributed above 12 km depth. The seismicity migration along the northwest–southeast direction can be clearly seen with an aseismic zone near the Coso volcanic field. Focal mechanisms are solved for all the relocated events based on the first-motion polarity data with dominant strike-slip fault solutions. The Mw 6.4 and 7.1 earthquakes are positioned at 12.45 and 4.16 km depths after the 3D relocation, respectively, with strike-slip focal solutions. These results can help our understanding of the 2019 Ridgecrest earthquake sequence and can be used in other seismological and geophysical studies. 
    more » « less
  4. One of most universal statistical properties of earthquakes is the tendency to cluster in space and time. Yet while clustering is pervasive, individual earthquake sequences can vary markedly in duration, spatial extent, and time evolution. In July 2014, a prolific earthquake sequence initiated within the Sheldon Wildlife Refuge in northwest Nevada, USA. The sequence produced 26 M4 earthquakes and several hundred M3s, with no clear mainshock or obvious driving force. Here we combine a suite of seismological analysis techniques to better characterize this unusual earthquake sequence. High-precision relocations reveal a clear, east dipping normal fault as the dominant structure that intersects with a secondary, subvertical cross fault. Seismicity occurs in burst of activity along these two structures before eventually transitioning to shallower structures to the east. Inversion of hundreds of moment tensors constrain the overall normal faulting stress regime. Source spectral analysis suggests that the stress drops and rupture properties of these events are typical for tectonic earthquakes in the western US. While regional station coverage is sparse in this remote study region, the timely installation of a temporary seismometer allows us to detect nearly 70,000 earthquakes over a 40-month time period when the seismic activity is highest. Such immense productivity is difficult to reconcile with current understanding of crustal deformation in the region and may be facilitated by local hydrothermal processes and earthquake triggering at the transitional intersection of subparallel fault systems. 
    more » « less
  5. Local soil conditions depict an important role in regional seismic hazard assessments due to their influence on earthquake-induced ground shaking and deformation. The different levels of damage and site response at nearby locations correlate to site and geologic conditions variability, as has been reported after past earthquakes. Evaluating spatially variable ground motions (GMs) is key for earthquake reconnaissance efforts and regional seismic hazard assessments. This study focuses on the evaluation of spatial correlations in site parameters (e.g. time-averaged shear-wave velocity to a depth of 30 meters) at Kiban-Kyoshin Network (KiK-net), and their comparison to the observed spatial correlation residuals from ground motion intensity measures (IMs) from the Mw9.1 Tohoku earthquake. Current spatial correlation models treat site effects either as a fixed amplification factor or as randomized amplifications, but site effects are neither fixed nor random. Hence, geostatistical methods are used here to estimate spatial correlations between parameters that control site response and integrate their effects on resulting spatially variable ground motions. In this work, we evaluate the significance of the spatial correlation for different site parameters with respect to the GM amplification IMs residuals. 
    more » « less