skip to main content

Search for: All records

Award ID contains: 2121666

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Understanding the connection between seismic activity and the earthquake nucleation process is a fundamental goal in earthquake seismology with important implications for earthquake early warning systems and forecasting. We use high-resolution acoustic emission (AE) waveform measurements from laboratory stick-slip experiments that span a spectrum of slow to fast slip rates to probe spatiotemporal properties of laboratory foreshocks and nucleation processes. We measure waveform similarity and pairwise differential travel-times (DTT) between AEs throughout the seismic cycle. AEs broadcasted prior to slow labquakes have small DTT and high waveform similarity relative to fast labquakes. We show that during slow stick-slip, the fault never fully locks, and waveform similarity and pairwise differential travel times do not evolve throughout the seismic cycle. In contrast, fast laboratory earthquakes are preceded by a rapid increase in waveform similarity late in the seismic cycle and a reduction in differential travel times, indicating that AEs begin to coalesce as the fault slip velocity increases leading up to failure. These observations point to key differences in the nucleation process of slow and fast labquakes and suggest that the spatiotemporal evolution of laboratory foreshocks is linked to fault slip velocity.

    more » « less

    To reach Earth’s surface, magma must ascend from the hot, ductile asthenosphere through cold and brittle rock in the lithosphere. It does so via fluid-filled fractures called dykes. While the continuum mechanics of ductile asthenosphere is well established, there has been little theoretical work on the cold and brittle regime where dyking and faulting occurs. Geodynamic models use plasticity to model fault-like behaviour; plasticity also shows promise for modelling dykes. Here we build on an existing model to develop a poro-viscoelastic–viscoplastic theory for two-phase flow across the lithosphere. Our theory addresses the deficiencies of previous work by incorporating (i) a hyperbolic yield surface, (ii) a plastic potential with control of dilatancy and (iii) a viscous regularization of plastic failure. We use analytical and numerical solutions to investigate the behaviour of this theory. Through idealized models and a comparison to linear elastic fracture mechanics, we demonstrate that this behaviour includes a continuum representation of dyking. Finally, we consider a model scenario reminiscent of continental rifting and demonstrate the consequences of dyke injection into the cold, upper lithosphere: a sharp reduction in the force required to rift.

    more » « less
  3. Abstract

    Physics‐based simulations of earthquake ground motion are useful to complement recorded ground motions. However, the computational expense of performing numerical simulations hinders their applicability to tasks that require real‐time solutions or ensembles of solutions for different earthquake sources. To enable rapid physics‐based solutions, we present a reduced‐order modeling approach based on interpolated proper orthogonal decomposition (POD) to predict peak ground velocities (PGVs). As a demonstrator, we consider PGVs from regional 3D wave propagation simulations at the location of the 2008MW5.4 Chino Hills earthquake using double‐couple sources with varying depth and focal mechanisms. These simulations resolve frequencies ≤1.0 Hz and include topography, viscoelastic attenuation, and S‐wave speeds ≥500 m/s. We evaluate the accuracy of the interpolated POD reduced‐order model (ROM) as a function of the approximation method. Comparing the radial basis function (RBF), multilayer perceptron neural network, random forest, andk‐nearest neighbor, we find that the RBF interpolation gives the lowest error (≈0.1 cm/s) when tested against an independent data set. We also find that evaluating the ROM is 107–108times faster than the wave propagation simulations. We use the ROM to generate PGV maps for 1 million different focal mechanisms, in which we identify potentially damaging ground motions and quantify correlations between focal mechanism, depth, and accuracy of the predicted PGV. Our results demonstrate that the ROM can rapidly and accurately approximate the PGV from wave propagation simulations with variable source properties, topography, and complex subsurface structure.

    more » « less
  4. Abstract

    The Húsavík‐Flatey Fault Zone (HFFZ) is the largest strike‐slip fault in Iceland and poses a high seismic risk to coastal communities. To investigate physics‐based constraints on earthquake hazards, we construct three fault system models of varying geometric complexity and model 79 3‐D multi‐fault dynamic rupture scenarios in the HFFZ. By assuming a simple regional prestress and varying hypocenter locations, we analyze the rupture dynamics, fault interactions, and the associated ground motions up to 2.5 Hz. All models account for regional seismotectonics, topo‐bathymetry, 3‐D subsurface velocity, viscoelastic attenuation, and off‐fault plasticity, and we explore the effect of fault roughness. The rupture scenarios obey earthquake scaling relations and predict magnitudes comparable to those of historical events. We show how fault system geometry and segmentation, hypocenter location, and prestress can affect the potential for rupture cascading, leading to varying slip distributions across different portions of the fault system. Our earthquake scenarios yield spatially heterogeneous near‐field ground motions modulated by geometric complexities, topography, and rupture directivity, particularly in the near‐field. The average ground motion attenuation characteristics of dynamic rupture scenarios of comparable magnitudes and mean stress drop are independent of variations in source complexity, magnitude‐consistent and in good agreement with the latest regional empirical ground motion models. However, physics‐based ground motion variability changes considerably with fault‐distance and increases for unilateral compared to bilateral ruptures. Systematic variations in physics‐based near‐fault ground motions provide important insights into the mechanics and potential earthquake hazard of large strike‐slip fault systems, such as the HFFZ.

    more » « less

    Tsunami generation by offshore earthquakes is a problem of scientific interest and practical relevance, and one that requires numerical modelling for data interpretation and hazard assessment. Most numerical models utilize two-step methods with one-way coupling between separate earthquake and tsunami models, based on approximations that might limit the applicability and accuracy of the resulting solution. In particular, standard methods focus exclusively on tsunami wave modelling, neglecting larger amplitude ocean acoustic and seismic waves that are superimposed on tsunami waves in the source region. In this study, we compare four earthquake-tsunami modelling methods. We identify dimensionless parameters to quantitatively approximate dominant wave modes in the earthquake-tsunami source region, highlighting how the method assumptions affect the results and discuss which methods are appropriate for various applications such as interpretation of data from offshore instruments in the source region. Most methods couple a 3-D solid earth model, which provides the seismic wavefield or at least the static elastic displacements, with a 2-D depth-averaged shallow water tsunami model. Assuming the ocean is incompressible and tsunami propagation is negligible over the earthquake duration leads to the instantaneous source method, which equates the static earthquake seafloor uplift with the initial tsunami sea surface height. For longer duration earthquakes, it is appropriate to follow the time-dependent source method, which uses time-dependent earthquake seafloor velocity as a forcing term in the tsunami mass balance. Neither method captures ocean acoustic or seismic waves, motivating more advanced methods that capture the full wavefield. The superposition method of Saito et al. solves the 3-D elastic and acoustic equations to model the seismic wavefield and response of a compressible ocean without gravity. Then, changes in sea surface height from the zero-gravity solution are used as a forcing term in a separate tsunami simulation, typically run with a shallow water solver. A superposition of the earthquake and tsunami solutions provides an approximation to the complete wavefield. This method is algorithmically a two-step method. The complete wavefield is captured in the fully coupled method, which utilizes a coupled solid Earth and compressible ocean model with gravity. The fully coupled method, recently incorporated into the 3-D open-source code SeisSol, simultaneously solves earthquake rupture, seismic waves and ocean response (including gravity). We show that the superposition method emerges as an approximation to the fully coupled method subject to often well-justified assumptions. Furthermore, using the fully coupled method, we examine how the source spectrum and ocean depth influence the expression of oceanic Rayleigh waves. Understanding the range of validity of each method, as well as its computational expense, facilitates the selection of modelling methods for the accurate assessment of earthquake and tsunami hazards and the interpretation of data from offshore instruments.

    more » « less
  6. Abstract

    Advances in physics‐based earthquake simulations, utilizing high‐performance computing, have been exploited to better understand the generation and characteristics of the high‐frequency seismic wavefield. However, direct comparison to ground motion observations of a specific earthquake is challenging. We here propose a new approach to simulate data‐fused broadband ground motion synthetics using 3D dynamic rupture modeling of the 2016Mw6.2 Amatrice, Italy earthquake. We augment a smooth, best‐fitting model from Bayesian dynamic rupture source inversion of strong‐motion data (<1 Hz) with fractal fault roughness, frictional heterogeneities, viscoelastic attenuation, and topography. The required consistency to match long periods allows us to quantify the role of small‐scale dynamic source heterogeneities, such as the 3D roughness drag, from observational broadband seismic waveforms. We demonstrate that 3D data‐constrained fully dynamic rupture synthetics show good agreement with various observed ground‐motion metrics up to ∼5 Hz and are an important avenue toward non‐ergodic, physics‐based seismic hazard assessment.

    more » « less
  7. Abstract

    The spectra of earthquake waveforms can provide important insight into rupture processes, but the analysis and interpretation of these spectra is rarely straightforward. Here we develop a Bayesian framework that embraces the inherent data and modeling uncertainties of spectral analysis to infer key source properties. The method uses a spectral ratio approach to correct the observedS‐wave spectra of nearby earthquakes for path and site attenuation. The objective then is to solve for a joint posterior probability distribution of three source parameters—seismic moment, corner frequency, and high‐frequency falloff rate—for each earthquake in the sequence, as well as a measure of rupture directivity for select target events with good azimuthal station coverage. While computationally intensive, this technique provides a quantitative understanding of parameter tradeoffs and uncertainties and allows one to impose physical constraints through prior distributions on all source parameters, which guide the inversion when data is limited. We demonstrate the method by analyzing in detail the source properties of 14 different target events of magnitude M5 in southern California that span a wide range of tectonic regimes and fault systems. These prominent earthquakes, while comparable in size, exhibit marked diversity in their source properties and directivity, with clear spatial patterns, depth‐dependent trends, and a preference for unilateral directivity. These coherent spatial variations source properties suggest that regional differences in tectonic setting, hypocentral depth or fault zone characteristics may drive variability in rupture processes, with important implications for our understanding of earthquake physics and its relation to hazard.

    more » « less

    We introduce a new finite-element (FE) based computational framework to solve forward and inverse elastic deformation problems for earthquake faulting via the adjoint method. Based on two advanced computational libraries, FEniCS and hIPPYlib for the forward and inverse problems, respectively, this framework is flexible, transparent and easily extensible. We represent a fault discontinuity through a mixed FE elasticity formulation, which approximates the stress with higher order accuracy and exposes the prescribed slip explicitly in the variational form without using conventional split node and decomposition discrete approaches. This also allows the first order optimality condition, that is the vanishing of the gradient, to be expressed in continuous form, which leads to consistent discretizations of all field variables, including the slip. We show comparisons with the standard, pure displacement formulation and a model containing an in-plane mode II crack, whose slip is prescribed via the split node technique. We demonstrate the potential of this new computational framework by performing a linear coseismic slip inversion through adjoint-based optimization methods, without requiring computation of elastic Green’s functions. Specifically, we consider a penalized least squares formulation, which in a Bayesian setting—under the assumption of Gaussian noise and prior—reflects the negative log of the posterior distribution. The comparison of the inversion results with a standard, linear inverse theory approach based on Okada’s solutions shows analogous results. Preliminary uncertainties are estimated via eigenvalue analysis of the Hessian of the penalized least squares objective function. Our implementation is fully open-source and Jupyter notebooks to reproduce our results are provided. The extension to a fully Bayesian framework for detailed uncertainty quantification and non-linear inversions, including for heterogeneous media earthquake problems, will be analysed in a forthcoming paper.

    more » « less
  9. Abstract Despite a lack of modern large earthquakes on shallowly dipping normal faults, Holocene M w  > 7 low-angle normal fault (LANF; dip<30°) ruptures are preserved paleoseismically and inferred from historical earthquake and tsunami accounts. Even in well-recorded megathrust earthquakes, the effects of non-linear off-fault plasticity and dynamically reactivated splay faults on shallow deformation and surface displacements, and thus hazard, remain elusive. We develop data-constrained 3D dynamic rupture models of the active Mai’iu LANF that highlight how multiple dynamic shallow deformation mechanisms compete during large LANF earthquakes. We show that shallowly-dipping synthetic splays host more coseismic slip and limit shallow LANF rupture more than steeper antithetic splays. Inelastic hanging-wall yielding localizes into subplanar shear bands indicative of newly initiated splay faults, most prominently above LANFs with thick sedimentary basins. Dynamic splay faulting and sediment failure limit shallow LANF rupture, modulating coseismic subsidence patterns, near-shore slip velocities, and the seismic and tsunami hazards posed by LANF earthquakes. 
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  10. ABSTRACT Seismic waves can couple with the atmosphere and generate sound waves. The influence of faulting mechanisms on earthquake sound patterns provides opportunities for earthquake source characterization. Sound radiated from earthquakes can be perceived as disturbing, even at low ground-shaking levels, which can negatively impact the social acceptance of geoengineering applications. Motivated by consistent reports of felt and heard disturbances associated with the weeks-long stimulation of a 6-km-deep geothermal system in 2018 below the Otaniemi district of Espoo, Helsinki, we conduct fully coupled 3D numerical simulations of wave propagation in the solid Earth and the atmosphere. We assess the sensitivity of the ground shaking and audible noise distributions to the source geometry of the induced earthquakes based on the properties of the largest local magnitude ML 1.8 event. Utilizing recent computational advances and the open-source software SeisSol, we model seismoacoustic frequencies up to 25 Hz, thereby reaching the lower limit of the human audible sound frequency range. We present synthetic distributions of shaking and audible sounds at the 50–100 m scale across a 12 km × 12 km area and discuss implications for better understanding seismic nuisances in metropolitan regions. In five 3D coupled elastic–acoustic scenario simulations that include data on topography and subsurface structure, we analyze the ground velocity and pressure levels of earthquake-generated seismic and acoustic waves. We show that S waves generate the strongest sound disturbance with sound pressure levels ≤0.04 Pa. We use statistical analysis to compare our noise distributions with commonly used empirical relationships. We find that our 3D synthetic amplitudes are generally smaller than the empirical predictions and that the interaction of the source mechanism-specific radiation pattern and topography can lead to significant nonlinear effects. Our study highlights the complexity and information content of spatially variable audible effects associated with small induced earthquakes on local scales. 
    more » « less
    Free, publicly-accessible full text available July 7, 2024