skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on April 25, 2026

Title: Locking-It-In and Doubling: Mediating Second-Grade Students’ Activity with Multiplicative Thinking
Using activity theory as a lens, we aimed to understand what second-grade students’ interactions revealed about their thinking and what mediated students’ engagement with important multiplicative ideas. In this setting, students interacted with multiplicative thinking using a coding robot and other artifacts as mediating tools. Through qualitative analysis, we found that students interacted with three concepts related to multiplicative thinking (i.e., composite units, doubling, iterating), and the lead mediators in their interactions included the robot’s remote, dry erase marker and table, and peers/teacher. Students gravitated to artifacts that made sense to them, and the implication is that students need agency in opportunities to use artifacts and have interactions with rules and the community to make meaning of complex mathematical ideas.  more » « less
Award ID(s):
2300357
PAR ID:
10598115
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
American Educational Research Association
Date Published:
Format(s):
Medium: X
Location:
Denver, Colorado
Sponsoring Org:
National Science Foundation
More Like this
  1. Computational thinking has become the calling card for re-introducing coding into schools. While much attention has focused on how students engage in designing systems, applications, and other computational artifacts as a measure of success for computational thinking, far fewer efforts have focused on what goes into remediating problems in designing systems and interactions because learners invariably make mistakes that need fixing-or debugging. In this panel, we examine the often overlooked practice of debugging that presents significant learning challenges (and opportunities) to students in completing assignments and instructional challenges to teachers in helping students to succeed in their classrooms. The panel participants will review what we know and don't know about debugging, discuss ways to conceptualize and study debugging, and present instructional approaches for helping teachers and students to engage productively in debugging situations. 
    more » « less
  2. Instructional designs that include two or more artifacts (digital manipulatives, tables, graphs) have shown to support students’ development of reasoning about covarying quantities. However, research often neglects how this development occurs from the student point of view during the interactions with these artifacts. An analysis from this lens could significantly justify claims about what designs really support students’ covariational reasoning. Our study makes this contribution by examining the “messiness” of students’ transitions as they interact with various artifacts that represent the same covariational situation. We present data from a design experiment with a pair of sixth-grade students who engaged with the set of artifacts we designed (simulation, table, and graph) to explore quantities that covary. An instrumental genesis perspective is followed to analyze students’ transitions from one artifact to the next. We utilize the distinction between static and emergent shape thinking to make inferences about their reorganizations of reasoning as they (re-)form a system of instruments that integrates previously developed instruments. Our findings provide an insight into the nature of the synergy of artifacts that offers a constructive space for students to shape and reorganize their meanings about covarying quantities. Specifically, we propose different subcategories of complementarities and antagonisms between artifacts that have the potential to make this synergy productive. 
    more » « less
  3. Lischka, A. E.; Dyer, E. B.; Jones, R. S.; Lovett, J. N..; Strayer, J.; & Drown, S. (Ed.)
    Many studies use instructional designs that include two or more artifacts (digital manipulatives, tables, graphs) to support students’ development of reasoning about covarying quantities. While students’ forms of covariational reasoning and the designs are often the focus of these studies, the way students’ interactions and transitions between artifacts shape their actions and thinking is often neglected. By examining the transitions that students make between artifacts as they construct and reorganize their reasoning, our study aimed to justify claims made by various studies about the nature of the synergy of artifacts. In this paper, we present data from a design experiment with a pair of sixth-grade students to discuss how their transitions between artifacts provided a constructive space for them to reason about covarying quantities in graphs. 
    more » « less
  4. ASEE (Ed.)
    The purpose of this study was to measure the neurocognitive effects of think aloud when engineering students were designing. Thinking aloud is a commonly applied protocol in engineering design education research. The process involves students verbalizing what they are thinking as they perform a task. Students are asked to say what comes into their mind. This often includes what they are looking at, thinking, doing, and feeling. It provides insight into the student’s mental state and their cognitive processes when developing design ideas. Think aloud provides a richer understanding about how, what and why students’ design compared to solely evaluating their final product or performance. The results show that Ericsson and Simon's claim that there is no interference due to think-aloud is not supported by this study and more research is required to untangle the effect of think-aloud. 
    more » « less
  5. Driven by the need for students to be prepared for a world driven by computation, a number of recent educational reforms in science and mathematics have called for computational thinking concepts to be integrated into these content areas. However, in order for computational thinking (CT) to permeate K-12 education, we need to educate teachers about what CT ideas are and how they relate to what happens in their classroom on a day-to-day basis. This paper presents a toolkit to scaffold elementary teachers’ understanding of computational thinking ideas and how to integrate them into their lesson plans. 
    more » « less