skip to main content


Title: HOW TRANSITIONS BETWEEN RELATED ARTIFACTS SUPPORT STUDENTS’ COVARIATIONAL REASONING
Many studies use instructional designs that include two or more artifacts (digital manipulatives, tables, graphs) to support students’ development of reasoning about covarying quantities. While students’ forms of covariational reasoning and the designs are often the focus of these studies, the way students’ interactions and transitions between artifacts shape their actions and thinking is often neglected. By examining the transitions that students make between artifacts as they construct and reorganize their reasoning, our study aimed to justify claims made by various studies about the nature of the synergy of artifacts. In this paper, we present data from a design experiment with a pair of sixth-grade students to discuss how their transitions between artifacts provided a constructive space for them to reason about covarying quantities in graphs.  more » « less
Award ID(s):
1742125
NSF-PAR ID:
10383424
Author(s) / Creator(s):
; ;
Editor(s):
Lischka, A. E.; Dyer, E. B.; Jones, R. S.; Lovett, J. N..; Strayer, J.; & Drown, S.
Date Published:
Journal Name:
Proceedings of the forty-fourth annual meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education.
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Instructional designs that include two or more artifacts (digital manipulatives, tables, graphs) have shown to support students’ development of reasoning about covarying quantities. However, research often neglects how this development occurs from the student point of view during the interactions with these artifacts. An analysis from this lens could significantly justify claims about what designs really support students’ covariational reasoning. Our study makes this contribution by examining the “messiness” of students’ transitions as they interact with various artifacts that represent the same covariational situation. We present data from a design experiment with a pair of sixth-grade students who engaged with the set of artifacts we designed (simulation, table, and graph) to explore quantities that covary. An instrumental genesis perspective is followed to analyze students’ transitions from one artifact to the next. We utilize the distinction between static and emergent shape thinking to make inferences about their reorganizations of reasoning as they (re-)form a system of instruments that integrates previously developed instruments. Our findings provide an insight into the nature of the synergy of artifacts that offers a constructive space for students to shape and reorganize their meanings about covarying quantities. Specifically, we propose different subcategories of complementarities and antagonisms between artifacts that have the potential to make this synergy productive. 
    more » « less
  2. This study investigated novice mathematics teachers participating in an online teacher education course focused on covariational reasoning and understanding the behavior of functions. The analysis centered on documenting the emergence of participants’ sociomathematical norms for engaging in online asynchronous discussions. In this paper, we characterized participants’ initial mathematical discourse and documented two emergent sociomathematical norms, namely explaining why and emergent shape discourse. When participants explained why, they used specific quantities or symbolic representations of functions to justify why function graphs have particular visual features. When participants engaged in emergent shape discourse, they coordinated change between covarying quantities to justify why function graphs behave in certain ways. This study provides evidence that online settings can provide context for mathematics teachers engaging in legitimate collaborative mathematical activity and that activity can be enhanced by participation in discourse featuring specific sociomathematical norms. We discuss conjectures regarding the potential of reflective discussion activities paired with the Notice and Wonder Framework to support the emergence of generative sociomathematical norms. We also discuss potential relationships between characteristics of participants’ mathematical discourse and their membership with the core and periphery of a social network. 
    more » « less
  3. Citizen science programs offer opportunities for K-12 students to engage in authentic science inquiry. However, these programs often fall short of including learners as agents in the entire process, and thus contrast with the growing open science movement within scientific communities. Notably, study ideation and peer review, which are central to the making of science, are typically reserved for professional scientists. This study describes the implementation of an open science curriculum that engages high school students in a full cycle of scientific inquiry. We explored the focus and quality of students’ study designs and peer reviews, and their perceptions of open science based on their participation in the program. Specifically, we implemented a human brain and behavior citizen science unit in 6 classrooms across 3 high schools. After learning about open science and citizen science, students (N = 104) participated in scientist-initiated research studies, and then collaboratively proposed their own studies to investigate personally interesting questions about human behavior and the brain. Students then peer reviewed proposals of students from other schools. Based on a qualitative and quantitative analysis of students’ artifacts created in-unit and on a pre and posttest, we describe their interests, abilities, and self-reported experiences with study design and peer review. Our findings suggest that participation in open science in a human brain and behavior research context can engage students with critical aspects of experiment design, as well as with issues that are unique to human subjects research, such as research ethics. Meanwhile, the quality of students’ study designs and reviews changed in notable, but mixed, ways: While students improved in justifying the importance of research studies, they did not improve in their abilities to align methods to their research questions. In terms of peer review, students generally reported that their peers' feedback was helpful, but our analysis showed that student reviewers struggled to articulate concrete recommendations for improvement. In light of these findings, we discuss the need for curricula that support the development of research and review abilities by building on students’ interests, while also guiding students in transferring these abilities across a range of research foci. 
    more » « less
  4. Abstract

    We address a problem of promoting instructional transformation in early undergraduate mathematics courses, via an intervention incorporating novel digital resources (“techtivities”), in conjunction with a faculty learning community (FLC). The techtivities can serve as boundary objects, in order to bridge different communities to which instructors belong. Appealing to Etienne Wenger’s Communities of Practice theory, we theorise a role of the instructor as a broker, facilitating “boundary transitions” within, across, and beyond a set of digital resources. By “boundary transition”, we mean a transition that is also a brokering move; instructors connect different communities as they draw links between items in their instruction. To ground our argument, we provide empirical evidence from an instructor, Rachel, whose boundary transitions served three functions: (1) to position the techtivities as something that count in the classroom community and connect to topics valued by the broader mathematics community; (2) to communicate to students that their reasoning matters more than whether they provide a correct answer, a practice promoted in the FLC; (3) to connect students’ responses to mathematical ideas discussed in the FLC, in which graphs represent a relationship between variables. Instructors’ boundary transitions can serve to legitimise novel digital resources within an existing course and thereby challenge thestatus quoin courses where skills and procedures may take precedence over reasoning and sense-making.

     
    more » « less
  5. null (Ed.)
    Integrating mathematics content into science usually plays a supporting role, where students use their existing mathematical knowledge for solving science tasks without exhibiting any new mathematical meanings during the process. To help students explore the reciprocal relationship between math and science, we designed an instructional module that prompted them to reason covariationally about the quantities involved in the phenomenon of the gravitational force. The results of a whole-class design experiment with sixth-grade students showed that covariational reasoning supported students’ understanding of the phenomenon of gravity. Also, the examination of the phenomenon of gravity provided a constructive space for students to construct meanings about co-varying quantities. Specifically, students reasoned about the change in the magnitudes and values of mass, distance, and gravity as those changed simultaneously as well as the multiplicative change of these quantities as they changed in relation to each other. They also reasoned multivariationally illustrating that they coordinated mass and distance working together to define the gravitational force. Their interactions with the design, which included the tool, tasks, representations, and questioning, showed to be a structuring factor in the formation and reorganization of meanings that students exhibited. Thus, this study illustrates the type of design activity that provided a constructive space for students’ forms of covariational reasoning in the context of gravity. This design can be used to develop other STEM modules that integrate scientific phenomena with covariational reasoning through technology. 
    more » « less