skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Totally Geodesic Surfaces in Hyperbolic 3-Manifolds: Algorithms and Examples
Finding a totally geodesic surface, an embedded surface where the geodesics in the surface are also geodesics in the surrounding manifold, has been a problem of interest in the study of 3-manifolds. This has especially been of interest in hyperbolic 3-manifolds and knot complements, complements of piecewise-linearly embedded circles in the 3-sphere. This is due to Menasco-Reid’s conjecture stating that hyperbolic knot complements do not contain such surfaces. Here, we present an algorithm that determines whether a given surface is totally geodesic and an algorithm that checks whether a given 3-manifold contains a totally geodesic surface. We applied our algorithm on over 150,000 3-manifolds and discovered nine 3-manifolds with totally geodesic surfaces. Additionally, we verified Menasco-Reid’s conjecture for knots up to 12 crossings.  more » « less
Award ID(s):
2303572
PAR ID:
10598121
Author(s) / Creator(s):
; ;
Editor(s):
Mulzer, Wolfgang; Phillips, Jeff M
Publisher / Repository:
Schloss Dagstuhl – Leibniz-Zentrum für Informatik
Date Published:
Volume:
293
ISSN:
1868-8969
ISBN:
978-3-95977-316-4
Page Range / eLocation ID:
14:1-14:19
Subject(s) / Keyword(s):
totally geodesic Fuchsian group hyperbolic knot complement computational topology low-dimensional topology Mathematics of computing → Geometric topology
Format(s):
Medium: X Size: 19 pages; 2353432 bytes Other: application/pdf
Size(s):
19 pages 2353432 bytes
Right(s):
Creative Commons Attribution 4.0 International license; info:eu-repo/semantics/openAccess
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We define a relative version of the Turaev–Viro invariants for an ideally triangulated compact 3‐manifold with nonempty boundary and a coloring on the edges, generalizing the Turaev–Viro invariants [36] of the manifold. We also propose the volume conjecture for these invariants whose asymptotic behavior is related to the volume of the manifold in the hyperbolic polyhedral metric [22, 23] with singular locus of the edges and cone angles determined by the coloring, and prove the conjecture in the case that the cone angles are sufficiently small. This suggests an approach of solving the volume conjecture for the Turaev–Viro invariants proposed by Chen–Yang [8] for hyperbolic 3‐manifolds with totally geodesic boundary. 
    more » « less
  2. We use the Weil–Petersson gradient flow for renormalized volume to study the space CC(N;S,X) of convex cocompact hyperbolic structures on the relatively acylindrical 3-manifold (N;S). Among the cases of interest are the deformation space of an acylindrical manifold and the Bers slice of quasifuchsian space associated to a fixed surface. To treat the possibility of degeneration along flow-lines to peripherally cusped structures, we introduce a surgery procedure to yield a surgered gradient flow that limits to the unique structure M_geod in CC( N;S,X) with totally geodesic convex core boundary facing S. Analyzing the geometry of structures along a flow line, we show that if V_R(M) is the renormalized volume of M, then V_R(M)−V_R(M_geod) is bounded below by a linear function of the Weil Petersson distance d_WP(∂_c M,∂_cM_geod), with constants depending only on the topology of S. The surgered flow gives a unified approach to a number of problems in the study of hyperbolic 3-manifolds, providing new proofs and generalizations of well-known theorems such as Storm’s result that M geod has minimal volume for N acylindrical and the second author’s result comparing convex core volume and Weil–Petersson distance for quasifuchsian manifolds. 
    more » « less
  3. Abstract We investigate and compare applications of the Zilber–Pink conjecture and dynamical methods to rigidity problems for arithmetic real and complex hyperbolic lattices. Along the way, we obtain new general results about reconstructing a variation of Hodge structure from its typical Hodge locus that may be of independent interest. Applications to Siu’s immersion problem are also discussed, the most general of which only requires the hypothesis that infinitely many closed geodesics map to proper totally geodesic subvarieties under the immersion. 
    more » « less
  4. We bound the derivative of complex length of a geodesic under variation of the projective structure on a closed surface in terms of the norm of the Schwarzian in a neighborhood of the geodesic. One application is to cone-manifold deformations of acylindrical hyperbolic 3-manifolds. 
    more » « less
  5. Abstract Let M be a geometrically finite acylindrical hyperbolic $$3$$ -manifold and let $M^*$ denote the interior of the convex core of M . We show that any geodesic plane in $M^*$ is either closed or dense, and that there are only countably many closed geodesic planes in $M^*$ . These results were obtained by McMullen, Mohammadi and Oh [Geodesic planes in hyperbolic 3-manifolds. Invent. Math. 209 (2017), 425–461; Geodesic planes in the convex core of an acylindrical 3-manifold. Duke Math. J. , to appear, Preprint , 2018, arXiv:1802.03853] when M is convex cocompact. As a corollary, we obtain that when M covers an arithmetic hyperbolic $$3$$ -manifold $$M_0$$ , the topological behavior of a geodesic plane in $M^*$ is governed by that of the corresponding plane in $$M_0$$ . We construct a counterexample of this phenomenon when $$M_0$$ is non-arithmetic. 
    more » « less