Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Motivated by an observation of Dehornoy, we study the roots of Alexander polynomials of knots and links that are closures of positive 3-strand braids. We give experimental data on random such braids and find that the roots exhibit marked patterns, which we refine into precise conjectures. We then prove several results along those lines, for example that generically at least 69% of the roots are on the unit circle, which appears to be sharp. We also show there is a large root-free region near the origin. We further study the equidistribution properties of such roots by introducing a Lyapunov exponent of the Burau representation of random positive braids, and a corresponding bifurcation measure. In the spirit of Deroin and Dujardin, we conjecture that the bifurcation measure gives the limiting measure for such roots, and prove this on a region with positive limiting mass. We use tools including work of Gambaudo and Ghys on the signature function of links, for which we prove a central limit theorem.more » « lessFree, publicly-accessible full text available June 1, 2026
-
Mulzer, Wolfgang; Phillips, Jeff M (Ed.)Finding a totally geodesic surface, an embedded surface where the geodesics in the surface are also geodesics in the surrounding manifold, has been a problem of interest in the study of 3-manifolds. This has especially been of interest in hyperbolic 3-manifolds and knot complements, complements of piecewise-linearly embedded circles in the 3-sphere. This is due to Menasco-Reid’s conjecture stating that hyperbolic knot complements do not contain such surfaces. Here, we present an algorithm that determines whether a given surface is totally geodesic and an algorithm that checks whether a given 3-manifold contains a totally geodesic surface. We applied our algorithm on over 150,000 3-manifolds and discovered nine 3-manifolds with totally geodesic surfaces. Additionally, we verified Menasco-Reid’s conjecture for knots up to 12 crossings.more » « less
-
Systematic enumeration and identification of unique 3D spatial topologies (STs) of complex engineering systems (such as automotive cooling systems, electric power trains, satellites, and aero-engines) are essential to navigation of these expansive design spaces with the goal of identifying new spatial configurations that can satisfy challenging system requirements. However, efficient navigation through discrete 3D ST options is a very challenging problem due to its combinatorial nature and can quickly exceed human cognitive abilities at even moderate complexity levels. This article presents a new, efficient, and scalable design framework that leverages mathematical spatial graph theory to represent, enumerate, and identify distinctive 3D topological classes for a generic 3D engineering system, given its system architecture (SA)—its components and their interconnections. First, spatial graph diagrams (SGDs) are generated for a given SA from zero to a specified maximum number of interconnect crossings. Then, corresponding Yamada polynomials for all the planar SGDs are generated. SGDs are categorized into topological classes, each of which shares a unique Yamada polynomial. Finally, within each topological class, 3D geometric models are generated using the SGDs having different numbers of interconnect crossings. Selected case studies are presented to illustrate the different features of our proposed framework, including an industrial engineering design application: ST enumeration of a 3D automotive fuel cell cooling system (AFCS). Design guidelines are also provided for practicing engineers to aid the application of this framework to different types of real-world problems such as configuration design and spatial packaging optimization.more » « less
An official website of the United States government
