skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on March 25, 2026

Title: Learning Dynamics of Deep Matrix Factorization Beyond the Edge of Stability
Deep neural networks trained using gradient descent with a fixed learning rate eta often operate in the regime of ``edge of stability'' (EOS), where the largest eigenvalue of the Hessian equilibrates about the stability threshold 2/eta. In this work, we present a fine-grained analysis of the learning dynamics of (deep) linear networks (DLNs) within the deep matrix factorization loss beyond EOS. For DLNs, loss oscillations beyond EOS follow a period-doubling route to chaos. We theoretically analyze the regime of the 2-period orbit and show that the loss oscillations occur within a small subspace, with the dimension of the subspace precisely characterized by the learning rate. The crux of our analysis lies in showing that the symmetry-induced conservation law for gradient flow, defined as the balancing gap among the singular values across layers, breaks at EOS and decays monotonically to zero. Overall, our results contribute to explaining two key phenomena in deep networks: (i) shallow models and simple tasks do not always exhibit EOS; and (ii) oscillations occur within top features}. We present experiments to support our theory, along with examples demonstrating how these phenomena occur in nonlinear networks and how they differ from those which have benign landscapes such as in DLNs.  more » « less
Award ID(s):
2312842 2143904 2212066
PAR ID:
10598289
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
International Conference on Learning Representations
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Recently, researchers observed that gradient descent for deep neural networks operates in an “edge-of-stability” (EoS) regime: the sharpness (maximum eigenvalue of the Hessian) is often larger than stability threshold 2/\eta (where \eta is the step size). Despite this, the loss oscillates and converges in the long run, and the sharpness at the end is just slightly below 2/\eta . While many other well-understood nonconvex objectives such as matrix factorization or two-layer networks can also converge despite large sharpness, there is often a larger gap between sharpness of the endpoint and 2/\eta . In this paper, we study EoS phenomenon by constructing a simple function that has the same behavior. We give rigorous analysis for its training dynamics in a large local region and explain why the fnal converging point has sharpness close to 2/\eta . Globally we observe that the training dynamics for our example have an interesting bifurcating behavior, which was also observed in the training of neural nets. 
    more » « less
  2. Recent research has observed that in machine learning optimization, gradient descent (GD) often operates at the edge of stability (EoS) [Cohen, et al., 2021], where the stepsizes are set to be large, resulting in non-monotonic losses induced by the GD iterates. This paper studies the convergence and implicit bias of constant-stepsize GD for logistic regression on linearly separable data in the EoS regime. Despite the presence of local oscillations, we prove that the logistic loss can be minimized by GD with \emph{any} constant stepsize over a long time scale. Furthermore, we prove that with \emph{any} constant stepsize, the GD iterates tend to infinity when projected to a max-margin direction (the hard-margin SVM direction) and converge to a fixed vector that minimizes a strongly convex potential when projected to the orthogonal complement of the max-margin direction. In contrast, we also show that in the EoS regime, GD iterates may diverge catastrophically under the exponential loss, highlighting the superiority of the logistic loss. These theoretical findings are in line with numerical simulations and complement existing theories on the convergence and implicit bias of GD for logistic regressio 
    more » « less
  3. The ability of learning useful features is one of the major advantages of neural networks. Although recent works show that neural network can operate in a neural tangent kernel (NTK) regime that does not allow feature learning, many works also demonstrate the potential for neural networks to go beyond NTK regime and perform feature learning. Recently, a line of work highlighted the feature learning capabilities of the early stages of gradient-based training. In this paper we consider another mechanism for feature learning via gradient descent through a local convergence analysis. We show that once the loss is below a certain threshold, gradient descent with a carefully regularized objective will capture ground-truth directions. We further strengthen this local convergence analysis by incorporating early-stage feature learning analysis. Our results demonstrate that feature learning not only happens at the initial gradient steps, but can also occur towards the end of training. 
    more » « less
  4. null (Ed.)
    Gradient descent-based optimization methods underpin the parameter training of neural networks, and hence comprise a significant component in the impressive test results found in a number of applications. Introducing stochasticity is key to their success in practical problems, and there is some understanding of the role of stochastic gradient descent in this context. Momentum modifications of gradient descent such as Polyak’s Heavy Ball method (HB) and Nesterov’s method of accelerated gradients (NAG), are also widely adopted. In this work our focus is on understanding the role of momentum in the training of neural networks, concentrating on the common situation in which the momentum contribution is fixed at each step of the algorithm. To expose the ideas simply we work in the deterministic setting. Our approach is to derive continuous time approximations of the discrete algorithms; these continuous time approximations provide insights into the mechanisms at play within the discrete algorithms. We prove three such approximations. Firstly we show that standard implementations of fixed momentum methods approximate a time-rescaled gradient descent flow, asymptotically as the learning rate shrinks to zero; this result does not distinguish momentum methods from pure gradient descent, in the limit of vanishing learning rate. We then proceed to prove two results aimed at understanding the observed practical advantages of fixed momentum methods over gradient descent, when implemented in the non-asymptotic regime with fixed small, but non-zero, learning rate. We achieve this by proving approximations to continuous time limits in which the small but fixed learning rate appears as a parameter; this is known as the method of modified equations in the numerical analysis literature, recently rediscovered as the high resolution ODE approximation in the machine learning context. In our second result we show that the momentum method is approximated by a continuous time gradient flow, with an additional momentum-dependent second order time-derivative correction, proportional to the learning rate; this may be used to explain the stabilizing effect of momentum algorithms in their transient phase. Furthermore in a third result we show that the momentum methods admit an exponentially attractive invariant manifold on which the dynamics reduces, approximately, to a gradient flow with respect to a modified loss function, equal to the original loss function plus a small perturbation proportional to the learning rate; this small correction provides convexification of the loss function and encodes additional robustness present in momentum methods, beyond the transient phase. 
    more » « less
  5. In this work, we present a novel approach for compressing overparameterized models, developed through studying their learning dynamics. We observe that for many deep models, updates to the weight matrices occur within a low-dimensional invariant subspace. For deep linear models, we demonstrate that their principal components are fitted incrementally within a small subspace, and use these insights to propose a compression algorithm for deep linear networks that involve decreasing the width of their intermediate layers. We empirically evaluate the effectiveness of our compression technique on matrix recovery problems. Remarkably, by using an initialization that exploits the structure of the problem, we observe that our compressed network converges faster than the original network, consistently yielding smaller recovery errors. We substantiate this observation by developing a theory focused on deep matrix factorization. Finally, we empirically demonstrate how our compressed model has the potential to improve the utility of deep nonlinear models. Overall, our algorithm improves the training efficiency by more than 2x, without compromising generalization. 
    more » « less