Summary Grasses are exceptionally productive, yet their hydraulic adaptation is paradoxical. Among C3grasses, a high photosynthetic rate (Aarea) may depend on higher vein density (Dv) and hydraulic conductance (Kleaf). However, the higherDvof C4grasses suggests a hydraulic surplus, given their reduced need for highKleafresulting from lower stomatal conductance (gs).Combining hydraulic and photosynthetic physiological data for diverse common garden C3and C4species with data for 332 species from the published literature, and mechanistic modeling, we validated a framework for linkages of photosynthesis with hydraulic transport, anatomy, and adaptation to aridity.C3and C4grasses had similarKleafin our common garden, but C4grasses had higherKleafthan C3species in our meta‐analysis. Variation inKleafdepended on outside‐xylem pathways. C4grasses have highKleaf : gs, which modeling shows is essential to achieve their photosynthetic advantage.Across C3grasses, higherAareawas associated with higherKleaf, and adaptation to aridity, whereas for C4species, adaptation to aridity was associated with higherKleaf : gs. These associations are consistent with adaptation for stress avoidance.Hydraulic traits are a critical element of evolutionary and ecological success in C3and C4grasses and are crucial avenues for crop design and ecological forecasting. 
                        more » 
                        « less   
                    
                            
                            Moiré excitons confined by twisted hBN substrates
                        
                    
    
            We demonstrate a new approach to confining excitons in a M oSe2monolayer via the electrostatic potential from a twisted hBN substrate, which offers more flexibility in controlling exciton properties in a moiré superlattice. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2122041
- PAR ID:
- 10598303
- Publisher / Repository:
- Optica Publishing Group
- Date Published:
- ISBN:
- 978-1-957171-39-5
- Page Range / eLocation ID:
- FW4B.3
- Format(s):
- Medium: X
- Location:
- Charlotte, North Carolina
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Polyhedral nitrogen containing molecules such as prismatic P3N3- a hitherto elusive isovalent species of prismane (C6H6) - have attracted particular attention from the theoretical, physical, and synthetic chemistry communities. Here we report on the preparation of prismatic P3N3[1,2,3-triaza-4,5,6-triphosphatetracyclo[2.2.0.02,6.03,5]hexane] by exposing phosphine (PH3) and nitrogen (N2) ice mixtures to energetic electrons. Prismatic P3N3was detected in the gas phase and discriminated from its isomers utilizing isomer selective, tunable soft photoionization reflectron time-of-flight mass spectrometry during sublimation of the ices along with an isomer-selective photochemical processing converting prismatic P3N3to 1,2,4-triaza-3,5,6-triphosphabicyclo[2.2.0]hexa-2,5-diene (P3N3). In prismatic P3N3, the P–P, P–N, and N–N bonds are lengthened compared to those in, e.g., diphosphine (P2H4), di-anthracene stabilized phosphorus mononitride (PN), and hydrazine (N2H4), by typically 0.03–0.10 Å. These findings advance our fundamental understanding of the chemical bonding of poly-nitrogen and poly-phosphorus systems and reveal a versatile pathway to produce exotic, ring-strained cage molecules.more » « less
- 
            Abstract There is a strong impetus to establish a circular phosphorus economy by securing internally renewable phosphate (Pi) resources for use as agricultural fertilizers. Reversible Piadsorption technologies such as ion exchange can remove and recover Pifrom water/wastewater for reuse. However, existing reversible adsorbents cannot effectively discriminate against arsenate (As(V)) due to the similarity between As(V) and Pichemical structure. If As(V) is co‐recovered with Pi, the value of the recovered products for agricultural reuse is low. The objective of this study was to construct an immobilized phosphate‐binding protein (PBP)‐based Piremoval and recovery system and analyze its selectivity for Piadsorption in the presence of As(V). A range of conditions was tested, including independent, sequential, and simultaneous exposure of the two oxyanions to immobilized PBP (PBP resin). The purity of the recovered Piproduct was assessed after inducing controlled desorption of the adsorbed oxyanions at high pH (pH 12.5). Piconstituted more than 97% of the adsorbed oxyanions in the recovered product, even when As(V) was initially present at twofold higher concentrations than Pi. Therefore, PBP resin has potential to selectively remove Pi, as well as release high‐purity Pifree of As(V) contamination suitable for subsequent agricultural reuse. Practitioner pointsExisting reversible phosphate (Pi) adsorbents cannot effectively discriminate against arsenate (As(V)) due to the similarity in their chemical structure.Co‐recovery of As(V) with Pican reduce the recovered product's reuse as a fertilizer.An immobilized phosphate‐binding protein (PBP)‐based system can be highly selective for Pieven in the presence of As(V).Piconstituted more than 97% of the recovered product, even when As(V) was present at 2‐fold higher concentrations than Pi.Immobilized PBP offers advantages over existing Piadsorbents by providing high‐purity Piproducts free of As(V) contamination for reuse.more » « less
- 
            PREMISEBiological invasions increasingly threaten native biodiversity and ecosystem services. One notable example is the common reed,Phragmites australis, which aggressively invades North American salt marshes. Elevated atmospheric CO2and nitrogen pollution enhance its growth and facilitate invasion becauseP. australisresponds more strongly to these enrichments than do native species. We investigated how modifications to stomatal features contribute to strong photosynthetic responses to CO2and nitrogen enrichment inP. australisby evaluating stomatal shifts under experimental conditions and relating them to maximal stomatal conductance (gwmax) and photosynthetic rates. METHODSPlants were grownin situin open‐top chambers under ambient and elevated atmospheric CO2(eCO2) and porewater nitrogen (Nenr) in a Chesapeake Bay tidal marsh. We measured light‐saturated carbon assimilation rates (Asat) and stomatal characteristics, from which we calculatedgwmaxand determined whether CO2and Nenraltered the relationship betweengwmaxandAsat. RESULTSeCO2and Nenrenhanced bothgwmaxandAsat, but to differing degrees;gwmaxwas more strongly influenced by Nenrthrough increases in stomatal density whileAsatwas more strongly stimulated by eCO2. There was a positive relationship betweengwmaxandAsatthat was not modified by eCO2or Nenr, individually or in combination. CONCLUSIONSChanges in stomatal features co‐occur with previously described responses ofP. australisto eCO2and Nenr. Complementary responses of stomatal length and density to these global change factors may facilitate greater stomatal conductance and carbon gain, contributing to the invasiveness of the introduced lineage.more » « less
- 
            Abstract The isotopic composition of precipitation is used to trace water cycling and climate change, but interpretations of the environmental information recorded in central Andean precipitation isotope ratios are hindered by a lack of multi‐year records, poor spatial distribution of observations, and a predominant focus on Rayleigh distillation. To better understand isotopic variability in central Andean precipitation, we present a three‐year record of semimonthly δ18Opand δ2Hpvalues from 15 stations in southern Peru and triple oxygen isotope data, expressed as ∆′17Op, from 32 precipitation samples. Consistent with previous work, we find that elevation correlates negatively with δ18Opand that seasonal δ18Opvariations are related to upstream rainout and local convection. Spatial δ18Opvariations and atmospheric back trajectories show that both eastern‐ and western‐derived air masses bring precipitation to southern Peru. Seasonal d‐excesspcycles record moisture recycling and relative humidity at remote moisture sources, and both d‐excesspand ∆′17Opclearly differentiate evaporated and non‐evaporated samples. These results begin to establish the natural range of unevaporated ∆′17Opvalues in the central Andes and set the foundation for future paleoclimate and paleoaltimetry studies in the region. This study highlights the hydrologic understanding that comes from a combination of δ18Op, d‐excessp, and ∆′17Opdata and helps identify the evaporation, recycling, and rainout processes that drive water cycling in the central Andes.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    