skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on June 1, 2026

Title: Evolution of complexity and the transition to biochemical life
While modern physics and biology satisfactorily explain the passage from the Big Bang to the formation of Earth and the first cells to present-day life, respectively, the origins of biochemical life still remain an open question. Since life, as we know it, requires extremely long genetic polymers, any answer to the question must explain how an evolving system of polymers of ever-increasing length could come about on a planet that otherwise consisted only of small molecular building blocks. In this work we show that, under realistic constraints, an abstract polymer model can exhibit dynamics such that attractors in the polymer population space with a higher average polymer length are also more probable. We generalize from the model and formalize the notions of and for chemical reaction networks with multiple attractors. The complexity of a species is defined as the minimum number of reactions needed to produce it from a set of building blocks, which in turn is used to define a measure of complexity for an attractor. A transition between attractors is considered to be a if the attractor with the higher probability also has a higher complexity. In an environment where only monomers are readily available, the attractor with a higher average polymer length is more complex. Thus, by this criterion, our abstract polymer model can exhibit progressive evolution for a range of thermodynamically plausible rate constants. We also formalize criteria for and evolution and explain the role of autocatalysis in obtaining them. Our work provides a basis for searching for prebiotically plausible scenarios in which long polymers can emerge and yield populations with even longer polymers. Additionally, the existence of features like history dependence and open endedness support the view that the path from chemistry to biology was one of gradual complexification rather than an instantaneous origin of life. Published by the American Physical Society2025  more » « less
Award ID(s):
2218817
PAR ID:
10598358
Author(s) / Creator(s):
;
Publisher / Repository:
Physical Review Journals
Date Published:
Journal Name:
Physical Review E
Volume:
111
Issue:
6
ISSN:
2470-0045
Page Range / eLocation ID:
064403
Subject(s) / Keyword(s):
Origins of life Autocatalysis Chemical reaction networks Thermodynamics Chemical complexity Evolution
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Dual-process theories of reasoning suggest that humans reason using two processes often referred to as process 1 (heuristic) and process 2 (analytic). When presented with a situation requiring any sort of reasoning or decision making, process 1 automatically engages and generates an initial mental model to address the situation. Process 2 may or may not be engaged to assess the initial model as a plausible solution. In a study by Kryjevskaia , a “screening” question regarding a pulse on a spring aimed to identify students with relevant content knowledge who nevertheless seemed to rely on process 1 when answering a subsequent “target” question. The study was offered as evidence that dual-process theories can explain some discrepancies in student responses to related questions. The study described here assesses the same pair of questions for their ability to distinguish between incorrect answers that stem from inadequate conceptual understanding and those that stem from reasoning approaches. We use Frederick’s cognitive reflection test as part of this analysis. Our results largely support a dual-process-theories perspective of student reasoning. Published by the American Physical Society2025 
    more » « less
  2. Biological systems often choose actions without an explicit reward signal, a phenomenon known as intrinsic motivation. The computational principles underlying this behavior remain poorly understood. In this study, we investigate an information-theoretic approach to intrinsic motivation, based on maximizing an agent's empowerment (the mutual information between its past actions and future states). We show that this approach generalizes previous attempts to formalize intrinsic motivation, and we provide a computationally efficient algorithm for computing the necessary quantities. We test our approach on several benchmark control problems, and we explain its success in guiding intrinsically motivated behaviors by relating our information-theoretic control function to fundamental properties of the dynamical system representing the combined agent-environment system. This opens the door for designing practical artificial, intrinsically motivated controllers and for linking animal behaviors to their dynamical properties. Published by the American Physical Society2024 
    more » « less
  3. Understanding the mechanisms governing the structure and dynamics of flexible polymers like chromosomes, especially the signatures of motor-driven active processes, is of great interest in genome biology. We study chromosomes as a coarse-grained polymer model where microscopic motor activity is captured via an additive temporally persistent noise. The active steady state is characterized by two parameters: active force, controlling the persistent-noise amplitude, and correlation time, the decay time of active noise. We find that activity drives correlated motion over long distances and a regime of dynamic compaction into a globally collapsed entangled globule. Diminished topological constraints destabilize the entangled globule, and the active segments trapped in the globule move toward the periphery, resulting in an enriched active monomer density near the periphery. We also show that heterogeneous activity leads to the segregation of the highly dynamic species from the less dynamic one, suggesting a role of activity in chromosome compartmental segregation. Adding activity to experimental-data-derived structures, we find active loci may mechanically perturb and switch compartments established via epigenetics-driven passive self-association. The key distinguishing signatures of activity are enhanced apparent diffusivity, exploration of all the dynamic regimes (subdiffusion, effective diffusion, and superdiffusion) at various lag times, and a broadened distribution of observables like the dynamic exponents. Published by the American Physical Society2024 
    more » « less
  4. High-coherence qubits, which can store and manipulate quantum states for long times with low error rates, are necessary building blocks for quantum computers. Here we propose a driven superconducting erasure qubit, the Floquet fluxonium molecule, which minimizes bit-flip rates through disjoint support of its qubit states and suppresses phase flips by a novel second-order insensitivity to flux-noise dephasing. We estimate the bit-flip, phase-flip, and erasure rates through numerical simulations, with predicted coherence times of approximately 50 ms in the computational subspace and erasure lifetimes of about 500 μ s . We also present a protocol for performing high-fidelity single-qubit rotation gates via additional flux modulation, on timescales of roughly 500 ns, and propose a scheme for erasure detection and logical readout. Our results demonstrate the utility of drives for building new qubits that can outperform their static counterparts. Published by the American Physical Society2024 
    more » « less
  5. Free-electron lasers (FELs) are the world's most brilliant light sources with rapidly evolving technological capabilities in terms of ultrabright and ultrashort pulses over a large range of photon energies. Their revolutionary and innovative developments have opened new fields of science regarding nonlinear light-matter interaction, the investigation of ultrafast processes from specific observer sites, and approaches to imaging matter with atomic resolution. A core aspect of FEL science is the study of isolated and prototypical systems in the gas phase with the possibility of addressing well-defined electronic transitions or particular atomic sites in molecules. Notably for polarization-controlled short-wavelength FELs, the gas phase offers new avenues for investigations of nonlinear and ultrafast phenomena in spin-orientated systems, for decoding the function of the chiral building blocks of life as well as steering reactions and particle emission dynamics in otherwise inaccessible ways. This roadmap comprises descriptions of technological capabilities of facilities worldwide, innovative diagnostics and instrumentation, as well as recent scientific highlights, novel methodology, and mathematical modeling. The experimental and theoretical landscape of using polarization controllable FELs for dichroic light-matter interaction in the gas phase will be discussed and comprehensively outlined to stimulate and strengthen global collaborative efforts of all disciplines. Published by the American Physical Society2025 
    more » « less