Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract Autocatalysis is thought to have played an important role in the earliest stages of the origin of life. An autocatalytic cycle (AC) is a set of reactions that results in stoichiometric increase in its constituent chemicals. When the reactions of multiple interacting ACs are active in a region of space, they can have interactions analogous to those between species in biological ecosystems. Prior studies of autocatalytic chemical ecosystems (ACEs) have suggested avenues for accumulating complexity, such as ecological succession, as well as obstacles such as competitive exclusion. We extend this ecological framework to investigate the effects of surface adsorption, desorption, and diffusion on ACE ecology. Simulating ACEs as particle-based stochastic reaction-diffusion systems in spatial environments—including open, two-dimensional reaction-diffusion systems and adsorptive mineral surfaces—we demonstrate that spatial structure can enhance ACE diversity by (i) permitting otherwise mutually exclusive ACs to coexist and (ii) subjecting new AC traits to selection.more » « less
- 
            While modern physics and biology satisfactorily explain the passage from the Big Bang to the formation of Earth and the first cells to present-day life, respectively, the origins of biochemical life still remain an open question. Since life, as we know it, requires extremely long genetic polymers, any answer to the question must explain how an evolving system of polymers of ever-increasing length could come about on a planet that otherwise consisted only of small molecular building blocks. In this work we show that, under realistic constraints, an abstract polymer model can exhibit dynamics such that attractors in the polymer population space with a higher average polymer length are also more probable. We generalize from the model and formalize the notions of and for chemical reaction networks with multiple attractors. The complexity of a species is defined as the minimum number of reactions needed to produce it from a set of building blocks, which in turn is used to define a measure of complexity for an attractor. A transition between attractors is considered to be a if the attractor with the higher probability also has a higher complexity. In an environment where only monomers are readily available, the attractor with a higher average polymer length is more complex. Thus, by this criterion, our abstract polymer model can exhibit progressive evolution for a range of thermodynamically plausible rate constants. We also formalize criteria for and evolution and explain the role of autocatalysis in obtaining them. Our work provides a basis for searching for prebiotically plausible scenarios in which long polymers can emerge and yield populations with even longer polymers. Additionally, the existence of features like history dependence and open endedness support the view that the path from chemistry to biology was one of gradual complexification rather than an instantaneous origin of life. Published by the American Physical Society2025more » « lessFree, publicly-accessible full text available June 1, 2026
- 
            Developing a mathematical understanding of autocatalysis in reaction networks has both theoretical and practical implications. We review definitions of autocatalytic networks and prove some properties for minimal autocatalytic subnetworks (MASs). We show that it is possible to classify MASs in equivalence classes, and develop mathematical results about their behavior. We also provide linear-programming algorithms to exhaustively enumerate them and a scheme to visualize their polyhedral geometry and combinatorics. We then define cluster chemical reaction networks, a framework for coarse-graining real chemical reactions with positive integer conservation laws. We find that the size of the list of minimal autocatalytic subnetworks in a maximally connected cluster chemical reaction network with one conservation law grows exponentially in the number of species. We end our discussion with open questions concerning an ecosystem of autocatalytic subnetworks and multidisciplinary opportunities for future investigation.more » « less
- 
            The vesicles of short chain amphiphiles have been demonstrated to grow and divide. Here, we explored whether vesicle populations show evidence of heritability. We prepared 1:1 decanoic acid:decylamine vesicles with or without a detergent and in either water or prebiotic soup, a mixture of compounds that might have been present on early Earth. The mixtures were subjected to transfer with dilution, where, after 24 h of incubation (one generation), we transferred 10% of the mix into a 90% volume of a fresh vesicle-containing solution. This was continued for 30 generations. Samples with a history of transfers were compared to no-transfer controls (NTCs), initiated each generation using the same solutions but without 10% of the prior generation. We compared the vesicle size distribution and chemical composition of the transfer samples and NTCs and compared their fluorescence signals in the presence of Nile Red dye. We observe changes in the vesicle size but did not detect differences in the chemical composition. In the samples with detergent and soup, we observed irregular changes in the Nile Red fluorescence, with a tendency for parent and offspring samples to have correlated values, suggestive of heritability. This last result, combined with evidence of temporal autocorrelation across generations, suggests the possibility that vesicles could respond to selection.more » « less
- 
            Prior research on evolutionary mechanisms during the origin of life has mainly assumed the existence of populations of discrete entities with information encoded in genetic polymers. Recent theoretical advances in autocatalytic chemical ecology establish a broader evolutionary framework that allows for adaptive complexification prior to the emergence of bounded individuals or genetic encoding. This framework establishes the formal equivalence of cells, ecosystems and certain localized chemical reaction systems as autocatalytic chemical ecosystems (ACEs): food-driven (open) systems that can grow due to the action of autocatalytic cycles (ACs). When ACEs are organized in meta-ecosystems, whether they be populations of cells or sets of chemically similar environmental patches, evolution, defined as change in AC frequency over time, can occur. In cases where ACs are enriched because they enhance ACE persistence or dispersal ability, evolution is adaptive and can build complexity. In particular, adaptive evolution can explain the emergence of self-bounded units (e.g. protocells) and genetic inheritance mechanisms. Recognizing the continuity between ecological and evolutionary change through the lens of autocatalytic chemical ecology suggests that the origin of life should be seen as a general and predictable outcome of driven chemical ecosystems rather than a phenomenon requiring specific, rare conditions.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
