Abstract Prescribed fire is the largest source of fine particulate matter emissions in the Southeastern United States, yet its air quality impacts remain highly uncertain. Here, we assess the influence of prescribed fire on observed pollutant concentrations in the region using a unique fire data set compiled from multiyear digital burn permit records. There is a significant association between prescribed fire activity and concentrations recorded at Southeastern monitoring sites, with permitted burning explaining as much as 50% variability in daily PM2.5concentrations. This relationship varies spatially and temporally across the region and as a function of burn type. At most locations, the association between PM2.5concentration and permitted burning is stronger than that with satellite‐derived burn area or meteorological drivers of air quality. These results highlight the value of bottom‐up data in evaluating the contribution of prescribed fire to regional air pollution and reveal a need to develop more complete burn records.
more »
« less
Impacts of climate change on land management and wildland fire smoke in the Southeastern United States
Abstract Although prescribed fire is frequently used in the Southeastern United States, land managers in the region and across the country plan to expand burning to mitigate wildfire and achieve other ecological goals. However, smoke management is often considered a barrier to prescribed fire. Additionally, climate change will likely affect the frequency of acceptable meteorological conditions for prescribed burning, potentially restricting the use of the practice. Here, we examine the air quality impacts from prescribed fire and wildfire in the Southeastern U.S., the populations affected by smoke in the region, and how these impacts may change under climate change. We rely on projections of wildfire burn area and climate-driven shifts in the frequency of meteorological conditions adequate for prescribed burning, as well as a survey of Southeastern land managers investigating their anticipated response to these changes. Based on this information, we use chemical transport modeling to assess the contributions of wildfire and prescribed fire to air pollution, and project how smoke impacts may vary due to climate change and different land manager responses. We find that prescribed fire is responsible for a significant fraction of regional particulate matter pollution. Populations exposed to the most smoke tend to have higher fractions of people of color and low income. Depending on how land managers respond to changes in atmospheric conditions under climate change, prescribed fire smoke may decrease slightly in the areas with the heaviest burning or increase across much of the Southeast. Projections also show that climate-driven changes in wildfire and prescribed burning may impact compliance with recently updated air quality standards. The analysis assesses the potential consequences of climate change on air pollution over a region in which wildland fire is extensively managed, providing insight into land management strategies that call for increased application of prescribed fire.
more »
« less
- Award ID(s):
- 1751601
- PAR ID:
- 10598450
- Publisher / Repository:
- IOP Publishing
- Date Published:
- Journal Name:
- Environmental Research Letters
- Volume:
- 20
- Issue:
- 7
- ISSN:
- 1748-9326
- Format(s):
- Medium: X Size: Article No. 074022
- Size(s):
- Article No. 074022
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Background: Climate change is a strong contributing factor in the lengthening and intensification of wildfire seasons, with warmer and often drier conditions associated with increasingly severe impacts. Land managers are faced with challenging decisions about how to manage forests, minimize risk of extreme wildfire, and balance competing values at risk, including communities, habitat, air quality, surface drinking water, recreation, and infrastructure. Aims: We propose that land managers use decision analytic frameworks to complement existing decision support systems such as the Interagency Fuel Treatment Decision Support System. Methods: We apply this approach to a fire-prone landscape in eastern Washington State under two proposed landscape treatment alternatives. Through stakeholder engagement, a quantitative wildfire risk assessment, and translating results into probabilistic descriptions of wildfire occurrence (burn probability) and intensity (conditional flame length), we construct a decision tree to explicitly evaluate tradeoffs of treatment alternative outcomes. Key Results: We find that while there are slightly more effective localized benefits for treatments involving thinning and prescribed burning, neither of the UWPP’s proposed alternatives are more likely to meaningfully minimize the risk of wildfire impacts at the landscape level. Conclusions: This case study demonstrates that a quantitatively informed decision analytic framework can improve land managers’ ability to effectively and explicitly evaluate tradeoffs between treatment alternatives.more » « less
-
Abstract Wildfire frequency has increased in the Western US over recent decades, driven by climate change and a legacy of forest management practices. Consequently, human structures, health, and life are increasingly at risk due to wildfires. Furthermore, wildfire smoke presents a growing hazard for regional and national air quality. In response, many scientific tools have been developed to study and forecast wildfire behavior, or test interventions that may mitigate risk. In this study, we present a retrospective analysis of 1 month of the 2020 Northern California wildfire season, when many wildfires with varying environments and behavior impacted regional air quality. We simulated this period using a coupled numerical weather prediction model with online atmospheric chemistry, and compare two approaches to representing smoke emissions: an online fire spread model driven by remotely sensed fire arrival times and a biomass burning emissions inventory. First, we quantify the differences in smoke emissions and timing of fire activity, and characterize the subsequent impact on estimates of smoke emissions. Next, we compare the simulated smoke to surface observations and remotely sensed smoke; we find that despite differences in the simulated smoke surface concentrations, the two models achieve similar levels of accuracy. We present a detailed comparison between the performance and relative strengths of both approaches, and discuss potential refinements that could further improve future simulations of wildfire smoke. Finally, we characterize the interactions between smoke and meteorology during this event, and discuss the implications that increases in regional smoke may have on future meteorological conditions.more » « less
-
Wildfire activity in the western United States has been on the rise since the mid-1980s, with longer, higher-risk fire seasons projected for the future. Prescribed burning mitigates the risk of extreme wildfire events, but such treatments are currently underutilized. Fire managers have cited lack of firefighter availability as a key barrier to prescribed burning. We use both principal component analysis (PCA) and logistic regression modeling methodologies to investigate whether or not (and if yes, under what conditions) personnel shortages on a given day are associated with lower odds of a prescribed burn occurring in the Okanogan–Wenatchee National Forest. We utilize the logit model to further assess how personnel availability compares to other potential barriers (e.g., meteorological conditions) in terms of association with odds of a prescribed burn occurring. Our analysis finds that fall and spring days in general have distinct constellations of characteristics. Unavailability of personnel is associated with lower odds of prescribed burning in the fall season, controlling for meteorological conditions. However, in the spring, only fuel moisture is observed to be associated with the odds of prescribed burning. Our findings suggest that if agencies aim to increase prescribed burning to mitigate wildfire risk, workforce decisions should prioritize firefighter availability in the fall.more » « less
-
BackgroundPrescribed fire is a land management tool used extensively across the United States. Owing to health and safety risks, smoke emitted by burns requires appropriate management. Smoke modelling tools are often used to mitigate air pollution impacts. However, direct comparisons of tools’ predictions are lacking. AimsWe compared three tools commonly used to plan prescribed burning projects: the Simple Smoke Screening Tool, VSmoke and HYSPLIT. MethodsWe used each tool to model smoke dispersion from prescribed burns conducted by the North Carolina Division of Parks and Recreation over a year. We assessed similarity among the tools’ predicted smoke fields, areas of concern and potential population impacts. Key resultsThe total smoke area predicted by the tools differs by thousands of square kilometres and, as such, spatial agreement was low. When translated into numbers of residents potentially exposed to smoke, tool estimates can vary by an order of magnitude. ConclusionsOur analysis of an operational burning program suggests that the differences among the tools are significant and inconsistent. ImplicationsWhile our analysis shows that improved and more consistent smoke modelling tools could better support land management, clear guidelines on how to apply their predictions are also necessary to obtain these benefits.more » « less
An official website of the United States government
