skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on May 1, 2026

Title: A Quantitative Analysis of Firefighter Availability and Prescribed Burning in the Okanogan–Wenatchee National Forest
Wildfire activity in the western United States has been on the rise since the mid-1980s, with longer, higher-risk fire seasons projected for the future. Prescribed burning mitigates the risk of extreme wildfire events, but such treatments are currently underutilized. Fire managers have cited lack of firefighter availability as a key barrier to prescribed burning. We use both principal component analysis (PCA) and logistic regression modeling methodologies to investigate whether or not (and if yes, under what conditions) personnel shortages on a given day are associated with lower odds of a prescribed burn occurring in the Okanogan–Wenatchee National Forest. We utilize the logit model to further assess how personnel availability compares to other potential barriers (e.g., meteorological conditions) in terms of association with odds of a prescribed burn occurring. Our analysis finds that fall and spring days in general have distinct constellations of characteristics. Unavailability of personnel is associated with lower odds of prescribed burning in the fall season, controlling for meteorological conditions. However, in the spring, only fuel moisture is observed to be associated with the odds of prescribed burning. Our findings suggest that if agencies aim to increase prescribed burning to mitigate wildfire risk, workforce decisions should prioritize firefighter availability in the fall.  more » « less
Award ID(s):
2019762
PAR ID:
10590441
Author(s) / Creator(s):
; ;
Publisher / Repository:
Fire
Date Published:
Journal Name:
Fire
Volume:
8
Issue:
5
ISSN:
2571-6255
Page Range / eLocation ID:
167
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    National and regional preparedness level (PL) designations support decisions about wildfire risk management. Such decisions occur across the fire season and influence pre-positioning of resources in areas of greatest fire potential, recall of personnel from off-duty status, requests for back-up resources from other areas, responses to requests to share resources with other regions during fire events, and decisions about fuel treatment and risk reduction, such as prescribed burning. In this paper, we assess the association between PLs assigned at national and regional (Northwest) scales and a set of predictors including meteorological and climate variables, wildfire activity and the mobilisation and allocation levels of fire suppression resources. To better understand the implicit weighting applied to these factors in setting PLs, we discern the qualitative and quantitative factors associated with PL designations by statistical analysis of the historical record of PLs across a range of conditions. Our analysis constitutes an important step towards efforts to forecast PLs and to support the future projection and anticipation of firefighting resource demand, thereby aiding wildfire risk management, planning and preparedness. 
    more » « less
  2. Abstract Although prescribed fire is frequently used in the Southeastern United States, land managers in the region and across the country plan to expand burning to mitigate wildfire and achieve other ecological goals. However, smoke management is often considered a barrier to prescribed fire. Additionally, climate change will likely affect the frequency of acceptable meteorological conditions for prescribed burning, potentially restricting the use of the practice. Here, we examine the air quality impacts from prescribed fire and wildfire in the Southeastern U.S., the populations affected by smoke in the region, and how these impacts may change under climate change. We rely on projections of wildfire burn area and climate-driven shifts in the frequency of meteorological conditions adequate for prescribed burning, as well as a survey of Southeastern land managers investigating their anticipated response to these changes. Based on this information, we use chemical transport modeling to assess the contributions of wildfire and prescribed fire to air pollution, and project how smoke impacts may vary due to climate change and different land manager responses. We find that prescribed fire is responsible for a significant fraction of regional particulate matter pollution. Populations exposed to the most smoke tend to have higher fractions of people of color and low income. Depending on how land managers respond to changes in atmospheric conditions under climate change, prescribed fire smoke may decrease slightly in the areas with the heaviest burning or increase across much of the Southeast. Projections also show that climate-driven changes in wildfire and prescribed burning may impact compliance with recently updated air quality standards. The analysis assesses the potential consequences of climate change on air pollution over a region in which wildland fire is extensively managed, providing insight into land management strategies that call for increased application of prescribed fire. 
    more » « less
  3. Prescribed burning by Indigenous people was once ubiquitous throughout California. Settler colonialism brought immense investments in fire suppression by the United States Forest Service and the California Department of Forestry and Fire Prevention (CAL FIRE) to protect timber and structures, effectively limiting prescribed burning in California. Despite this, fire-dependent American Indian communities such as the Karuk and Yurok peoples, stalwartly advocate for expanding prescribed burning as a part of their efforts to revitalize their culture and sovereignty. To examine the political ecology of prescribed burning in Northern California, we coupled participant observation of prescribed burning in Karuk and Yurok territories (2015–2019) with 75 surveys and 18 interviews with Indigenous and non-Indigenous fire managers to identify political structures and material conditions that facilitate and constrain prescribed fire expansion. Managers report that interagency partnerships have provided supplemental funding and personnel to enable burning, and that decentralized prescribed burn associations facilitate prescribed fire. However, land dispossession and centralized state regulations undermine Indigenous and local fire governance. Excessive investment in suppression and the underfunding of prescribed fire produces a scarcity of personnel to implement and plan burns. Where Tribes and local communities have established burning infrastructure, authorities should consider the devolution of decision-making and land repatriation to accelerate prescribed fire expansion. 
    more » « less
  4. GrantWilliamson (Ed.)
    Increasing wildfire activities across the Great Plains has raised concerns about the effectiveness and safety of prescribed fire as a land management tool. This study analyzes wildfire records from 1992 to 2020 to assess spatiotemporal patterns in wildfire risk and evaluate the role of prescribed fires through the combined analysis of wildfire and prescribed fire data. Results show a threefold increase in both wildfire frequency and area burned, with fire size increasing from east to west and frequency rising from north to south. Wildfire seasons are gradually occurring earlier due to climate change. Negative correlation between prescribed fires in spring and wildfires in summer indicated the effectiveness of prescribed fire in mitigating wildfire risk. Drought severity accounted for 51% of the interannual variability in area burned, while grass curing accounted for 60% of monthly variability of wildfires in grasslands. The ratio of wildfire area burned to total area burned (dominated by prescribed fires) declined from over 20% in early March to below 1% by early April. The results will lay a foundation for the development of a localized fire risk assessment tool that integrates various long-term, mid-term, and short-term risk factors, and support more effective fire management in this region. 
    more » « less
  5. Abstract Restoring ecosystems in a changing climate requires understanding how management interventions interact with climate conditions. In tallgrass prairies, disturbance through fire, mowing, or grazing is a critical force in maintaining herbaceous plant diversity. However, unlike historical fire regimes that occurred throughout the growing season, management actions like prescribed fire and mowing are commonly limited to the spring or fall seasons. Warming winters are resulting in less snow, causing overwintering plants to experience reduced insulation from snow and these more extreme winter conditions may be exacerbated or ameliorated depending on the timing of management actions. Understanding this novel interaction between the timing of management actions and snow depth is critical for managing and restoring grassland ecosystems. Here, we applied experimental management treatments (spring and fall burn and fall mow) in combination with snow depth manipulations to test whether the type and timing of commonly implemented disturbances interact with snow depth to affect restored prairie plant diversity and composition. Overall, snow manipulations and management actions influenced soil temperature while only management actions influenced spring thaw timing. Burning in the fall, which removes litter prior to winter resulted in colder soils and earlier spring thaw timing. However, plant communities were mostly resistant to these effects. Instead, plants responded to management actions such that burning and mowing, regardless of timing, increased plant diversity and spring burning increased flowering structure cover while reducing weedy cool season grass cover. Together these results suggest that grassland plant communities are resistant to winter climate change over the short term and that burning or mowing is critical to promoting plant diversity in tallgrass prairies. 
    more » « less