We present a search for long-lived particles (LLPs), produced in kaon decays, that decay to two muons inside the ICARUS neutrino detector. This channel would be a signal of hidden sector models that can address outstanding issues in particle physics such as the strong CP problem and the microphysical origin of dark matter. The search is performed with data collected in the Neutrinos at the Main Injector (NuMI) beam at Fermilab corresponding to protons-on-target. No new physics signal is observed, and we set world leading limits on heavy QCD axions, as well as for the Higgs portal scalar among dedicated searches. Limits are also presented in a model-independent way applicable to any new physics model predicting the process , for a LLP . This result is the first search for new physics performed with the ICARUS detector at Fermilab. It paves the way for the future program of LLP searches at ICARUS. Published by the American Physical Society2025
more »
« less
This content will become publicly available on May 1, 2026
Dark plasmas in the nonlinear regime: Constraints from particle-in-cell simulations
If the dark sector possesses long-range self-interactions, these interactions can source dramatic collective instabilities even in astrophysical settings where the collisional mean free path is long. Here, we focus on the specific case of dark matter halos composed of a dark gauge sector undergoing a dissociative cluster merger. We study this by performing the first dedicated particle-in-cell plasma simulations of interacting dark matter streams, tracking the growth, formation, and saturation of instabilities through both the linear and nonlinear regimes. We find that these instabilities give rise to local (dark) electromagnetic inhomogeneities that serve as scattering sites, inducing an effective dynamic collisional cross section. Mapping this effective cross section onto existing results from large-scale simulations of the Bullet Cluster, we extend the limit on the dark charge-to-mass ratio by over 10 orders of magnitude. Our results serve as a simple example of the rich phenomenology that may arise in a dark sector with long-range interactions and motivate future dedicated study of such “dark plasmas.” Published by the American Physical Society2025
more »
« less
- Award ID(s):
- 2210361
- PAR ID:
- 10598466
- Publisher / Repository:
- American Physical Society
- Date Published:
- Journal Name:
- Physical Review D
- Volume:
- 111
- Issue:
- 9
- ISSN:
- 2470-0010
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
A search is presented for an extended Higgs sector with two new particles, and , in the process . Novel neural networks classify events with diphotons that are merged and determine the diphoton masses. The search uses LHC proton-proton collision data at collected with the CMS detector, corresponding to an integrated luminosity of . No evidence of such resonances is seen. Upper limits are set on the production cross section for between 300 and 3000 GeV and between 0.5% and 2.5%, representing the most sensitive search in this channel. © 2025 CERN, for the CMS Collaboration2025CERNmore » « less
-
The first measurement of the cross section for incoherent photonuclear production of vector mesons as a function of the Mandelstam variable is presented. The measurement was carried out with the ALICE detector at midrapidity, , using ultraperipheral collisions of Pb nuclei at a center-of-mass energy per nucleon pair of . This rapidity interval corresponds to a Bjorken- range . Cross sections are given in five intervals in the range and compared to the predictions by different models. Models that ignore quantum fluctuations of the gluon density in the colliding hadron predict a dependence of the cross section much steeper than in data. The inclusion of such fluctuations in the same models provides a better description of the data. © 2024 CERN, for the ALICE Collaboration2024CERNmore » « less
-
Dark matter particles could be superheavy, provided their lifetime is much longer than the age of the Universe. Using the sensitivity of the Pierre Auger Observatory to ultrahigh energy neutrinos and photons, we constrain a specific extension of the Standard Model of particle physics that meets the lifetime requirement for a superheavy particle by coupling it to a sector of ultralight sterile neutrinos. Our results show that, for a typical dark coupling constant of 0.1, the mixing angle between active and sterile neutrinos must satisfy, roughly, for a mass of the dark-matter particle between and . Published by the American Physical Society2024more » « less
-
We perform the first search for ultralight dark matter using a magnetically levitated particle. A submillimeter permanent magnet is levitated in a superconducting trap with a measured force sensitivity of . We find no evidence of a signal and derive limits on dark matter coupled to the difference between baryon and lepton number, , in the mass range . Our most stringent limit on the coupling strength is . We propose the POLONAISE (Probing Oscillations using Levitated Objects for Novel Accelerometry In Searches of Exotic physics) experiment, which features short-, medium-, and long-term upgrades that will give us leading sensitivity in a wide mass range, demonstrating the promise of this novel quantum sensing technology in the hunt for dark matter. Published by the American Physical Society2025more » « less
An official website of the United States government
