skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Two-Stage Stochastic Matching and Pricing with Applications to Ride Hailing
Two-Stage Matching and Pricing in Ride-Hailing Platforms Matching and pricing are two critical levers in two-sided marketplaces to connect demand and supply. The platform can produce more efficient matching and pricing decisions by batching the demand requests. We initiate the study of the two-stage stochastic matching problem with or without pricing to enable the platform to make improved decisions in a batch with an eye toward the imminent future demand requests. This problem is motivated in part by applications in online marketplaces, such as ride-hailing platforms. We design online competitive algorithms for vertex-weighted (or unweighted) two-stage stochastic matching for maximizing supply efficiency and two-stage joint matching and pricing for maximizing market efficiency. Using various techniques, such as introducing convex programming–based matching and graph decompositions, submodular maximization, and factor-revealing linear programs, we obtain either optimal competitive or improved approximation algorithms compared with naïve solutions. We enrich our theoretical study by data-driven numerical simulations using DiDi’s ride-sharing data sets.  more » « less
Award ID(s):
2312156
PAR ID:
10598484
Author(s) / Creator(s):
; ;
Publisher / Repository:
INFORMS
Date Published:
Journal Name:
Operations Research
Volume:
72
Issue:
4
ISSN:
0030-364X
Page Range / eLocation ID:
1574 to 1594
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Ride-hailing marketplaces like Uber and Lyft use dynamic pricing, often called surge, to balance the supply of available drivers with the demand for rides. We study driver-side payment mechanisms for such marketplaces, presenting the theoretical foundation that has informed the design of Uber’s new additive driver surge mechanism. We present a dynamic stochastic model to capture the impact of surge pricing on driver earnings and their strategies to maximize such earnings. In this setting, some time periods (surge) are more valuable than others (nonsurge), and therefore trips of different time lengths vary in the induced driver opportunity cost. First, we show that multiplicative surge, historically the standard on ride-hailing platforms, is not incentive compatible in a dynamic setting. We then propose a structured, incentive-compatible pricing mechanism. This closed-form mechanism has a simple form and is well approximated by Uber’s new additive surge mechanism. Finally, through both numerical analysis and real data from a ride-hailing marketplace, we show that additive surge is more incentive compatible in practice than is multiplicative surge. This paper was accepted by David Simchi-Levi, revenue management and market analytics. 
    more » « less
  2. Ride-pooling, which accommodates multiple passenger requests in a single trip, has the potential to substantially enhance the throughput of mobility-on-demand (MoD) systems. This paper investigates MoD systems that operate mixed fleets composed of “basic supply” and “augmented supply” vehicles. When the basic supply is insufficient to satisfy demand, augmented supply vehicles can be repositioned to serve rides at a higher operational cost. We formulate the joint vehicle repositioning and ride-pooling assignment problem as a two-stage stochastic integer program, where repositioning augmented supply vehicles precedes the realization of ride requests. Sequential ride-pooling assignments aim to maximize total utility or profit on a shareability graph: a hypergraph representing the matching compatibility between available vehicles and pending requests. Two approximation algorithms for midcapacity and high-capacity vehicles are proposed in this paper; the respective approximation ratios are [Formula: see text] and [Formula: see text], where p is the maximum vehicle capacity plus one. Our study evaluates the performance of these approximation algorithms using an MoD simulator, demonstrating that these algorithms can parallelize computations and achieve solutions with small optimality gaps (typically within 1%). These efficient algorithms pave the way for various multimodal and multiclass MoD applications. History: This paper has been accepted for the Transportation Science Special Issue on Emerging Topics in Transportation Science and Logistics. Funding: This work was supported by the National Science Foundation [Grants CCF-2006778 and FW-HTF-P 2222806], the Ford Motor Company, and the Division of Civil, Mechanical, and Manufacturing Innovation [Grants CMMI-1854684, CMMI-1904575, and CMMI-1940766]. Supplemental Material: The online appendix is available at https://doi.org/10.1287/trsc.2021.0349 . 
    more » « less
  3. When demand increases beyond the system capacity, riders in ride-hailing/ride-sharing systems often experience long waiting time, resulting in poor customer satisfaction. This paper proposes a spatio-temporal pricing framework (AP-RTRS) to alleviate this challenge and shows how it naturally complements state-of-the-art dispatching and routing algorithms. Specifically, the pricing optimization model regulates demand to ensure that every rider opting to use the system is served within reason-able time: it does so either by reducing demand to meet the capacity constraints or by prompting potential riders to postpone service to a later time. The pricing model is a model-predictive control algorithm that works at a coarser temporal and spatial granularity compared to the real-time dispatching and routing, and naturally integrates vehicle relocations. Simulation experiments indicate that the pricing optimization model achieves short waiting times without sacrificing revenues and geographical fairness. 
    more » « less
  4. Electrifying the ride-hailing services has the potential to significantly reduce greenhouse gas emissions in the shared mobility sector. However, these emission reduction benefits depend on the utilization of EVs to serve trip requests, especially during the fleet electrification process. In this paper, we evaluated the performance and emission impacts of ride-hailing service with three dispatching policies and various EV penetration levels in the ride-hailing fleet. A large-scale simulation platform was developed for the city of San Francisco in SUMO to enable the application of ride-hailing, electric vehicle charging, and idle vehicle repositioning. Simulation results indicate that with a 60% EVs in the simulated fleet, the off-peak EV priority policy and off-peak EV only policy can reduce CO2 emissions by 32% - 40% while preserving the mobility performance in terms of deadheading, total travel distance, and average rider pick-up time. It is important for ride-hailing platforms to increase the zero-emission rides and encourage ride pooling to comply with California’s Clean Miles Standard. 
    more » « less
  5. We study the problem of jointly pricing and designing a smart transit system, where a transit agency (the platform) controls a fleet of demand-responsive vehicles (cars) and a fixed line service (buses). The platform offers commuters a menu of options (modes) to travel between origin and destination (e.g., direct car trip, a bus ride, or a combination of the two), and commuters make a utility-maximizing choice within this menu, given the price of each mode. The goal of the platform is to determine an optimal set of modes to display to commuters, prices for these modes, and the design of the transit network in order to maximize the social welfare of the system. In this work, we tackle the commuter choice aspect of this problem, traditionally approached via computationally intensive bilevel programming techniques. In particular, we develop a framework that efficiently decouples the pricing and network design problem: Given an efficient (approximation) algorithm for centralized network design without prices, there exists an efficient (approximation) algorithm for decentralized network design with prices and commuter choice. We demonstrate the practicality of our framework via extensive numerical experiments on a real-world data set. We moreover explore the dependence of metrics such as welfare, revenue, and mode usage on (i) transfer costs and (ii) cost of contracting with on-demand service providers and exhibit the welfare gains of a fully integrated mobility system. Funding: This work was supported by the National Science Foundation [Awards CMMI-2308750, CNS-1952011, and CMMI-2144127]. Supplemental Material: The online appendix is available at https://doi.org/10.1287/trsc.2022.0452 . 
    more » « less