skip to main content


Title: Real-Time Pricing Optimization for Ride-Hailing Quality of Service

When demand increases beyond the system capacity, riders in ride-hailing/ride-sharing systems often experience long waiting time, resulting in poor customer satisfaction. This paper proposes a spatio-temporal pricing framework (AP-RTRS) to alleviate this challenge and shows how it naturally complements state-of-the-art dispatching and routing algorithms. Specifically, the pricing optimization model regulates demand to ensure that every rider opting to use the system is served within reason-able time: it does so either by reducing demand to meet the capacity constraints or by prompting potential riders to postpone service to a later time. The pricing model is a model-predictive control algorithm that works at a coarser temporal and spatial granularity compared to the real-time dispatching and routing, and naturally integrates vehicle relocations. Simulation experiments indicate that the pricing optimization model achieves short waiting times without sacrificing revenues and geographical fairness.

 
more » « less
Award ID(s):
1854684
NSF-PAR ID:
10328527
Author(s) / Creator(s):
;
Date Published:
Journal Name:
30th International Joint Conference on Artificial Intelligence (IJCAI-21
Page Range / eLocation ID:
3742 to 3748
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The increasing rate of urbanization has added pressure on the already constrained transportation networks in our communities. Ride-sharing platforms such as Uber and Lyft are becoming a more commonplace, particularly in urban environments. While such services may be deemed more convenient than riding public transit due to their on-demand nature, reports show that they do not necessarily decrease the congestion in major cities. One of the key problems is that typically mobility decision support systems focus on individual utility and react only after congestion appears. In this paper, we propose socially considerate multi-modal routing algorithms that are proactive and consider, via predictions, the shared effect of riders on the overall efficacy of mobility services. We have adapted the MATSim simulator framework to incorporate the proposed algorithms present a simulation analysis of a case study in Nashville, Tennessee that assesses the effects of our routing models on the traffic congestion for different levels of penetration and adoption of socially considerate routes. Our results indicate that even at a low penetration (social ratio), we are able to achieve an improvement in system-level performance. 
    more » « less
  2. As Autonomous Vehicles (AVs) become possible for E-hailing services operate, especially when telecom companies start deploying next-generation wireless networks (known as 5G), many new technologies may be applied in these vehicles. Dynamic-route-switching is one of these technologies, which could help vehicles find the best possible route based on real-time traffic information. However, allowing all AVs to choose their own optimal routes is not the best solution for a complex city network, since each vehicle ignores its negative effect on the road system due to the additional congestion it creates. As a result, with this system, some of the links may become over-congested, causing the whole road network system performance to degrade. Meanwhile, the travel time reliability, especially during the peak hours, is an essential factor to improve the customers' ride experience. Unfortunately, these two issues have received relatively less attention. In this paper, we design a link-based dynamic pricing model to improve the road network system and travel time reliability at the same time. In this approach, we assume that all links are eligible with the dynamic pricing, and AVs will be perfect informed with update traffic condition and follow the dynamic road pricing. A heuristic approach is developed to address this computationally difficult problem. The output includes link-based surcharge, new travel demand and traffic condition which would improve the system performance close to the System Optimal (SO) solution and maintain the travel time reliability. Finally, we evaluate the effectiveness and efficiency of the proposed model to the well-known test Sioux Falls network. 
    more » « less
  3. The market for on-demand food delivery (ODFD) has increased considerably, especially during the COVID-19 pandemic. It is crucial for transportation and environmental agencies to understand how ODFD has reshaped the travel patterns of people, affecting vehicle-miles traveled (VMT) as well as pollutant emissions in the transportation system. However, the lack of public data from food delivery companies makes it challenging to quantify the impact of on-demand delivery on the real-world transportation network. In this research, we propose a comprehensive framework to quantify the VMT and emissions incurred by ODFD with three main components: (i) a daily activity generation tool, Comprehensive Econometric Micro-simulator for Daily Activity-travel Patterns, to create a simulation scenario of ODFD behaviors based on a real-world roadway network and population demographics in the City of Riverside, California; (ii) an efficient order dispatching and routing algorithm, adaptive large neighborhood search, to obtain a high quality order dispatching and routing plan; (iii) an emission evaluation model, emission factor (EMFAC), to evaluate pollutant emissions from all dining-related trips. Both short-term and long-term impacts of the COVID-19 pandemic are evaluated. Experimental results show that ODFD has great potential to reduce the dining-related VMT and emissions. The total dining-related VMT in the during-pandemic case decreased by 38% and in the after-pandemic case reduced by 6% to 9%, and the corresponding environmental impacts were reduced accordingly. Meanwhile, emissions reduced significantly with more electric vehicles involved in food delivery. With 100% electric delivery fleet, the ODFD service can save 14% to 22% of emissions after the COVID-19 pandemic. 
    more » « less
  4. Urban dispersal events are processes where an unusually large number of people leave the same area in a short period. Early prediction of dispersal events is important in mitigating congestion and safety risks and making better dispatching decisions for taxi and ride-sharing fleets. Existing work mostly focuses on predicting taxi demand in the near future by learning patterns from historical data. However, they fail in case of abnormality because dispersal events with abnormally high demand are non-repetitive and violate common assumptions such as smoothness in demand change over time. Instead, in this paper we argue that dispersal events follow a complex pattern of trips and other related features in the past, which can be used to predict such events. Therefore, we formulate the dispersal event prediction problem as a survival analysis problem. We propose a two-stage framework (DILSA), where a deep learning model combined with survival analysis is developed to predict the probability of a dispersal event and its demand volume. We conduct extensive case studies and experiments on the NYC Yellow taxi dataset from 2014-2016. Results show that DILSA can predict events in the next 5 hours with F1-score of 0:7 and with average time error of 18 minutes. It is orders of magnitude better than the state-of-the-art deep learning approaches for taxi demand prediction. 
    more » « less
  5. Ride-hailing marketplaces like Uber and Lyft use dynamic pricing, often called surge, to balance the supply of available drivers with the demand for rides. We study driver-side payment mechanisms for such marketplaces, presenting the theoretical foundation that has informed the design of Uber’s new additive driver surge mechanism. We present a dynamic stochastic model to capture the impact of surge pricing on driver earnings and their strategies to maximize such earnings. In this setting, some time periods (surge) are more valuable than others (nonsurge), and therefore trips of different time lengths vary in the induced driver opportunity cost. First, we show that multiplicative surge, historically the standard on ride-hailing platforms, is not incentive compatible in a dynamic setting. We then propose a structured, incentive-compatible pricing mechanism. This closed-form mechanism has a simple form and is well approximated by Uber’s new additive surge mechanism. Finally, through both numerical analysis and real data from a ride-hailing marketplace, we show that additive surge is more incentive compatible in practice than is multiplicative surge. This paper was accepted by David Simchi-Levi, revenue management and market analytics. 
    more » « less