skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Atomistic modeling of temperature dependent coercivity and switching behavior in compositionally modulated CoGd alloys
Vertically inhomogeneous single layer ferrimagnetic films have emerged as exciting building blocks of potential next generation spintronic devices, owing to the observations of single layer switching driven by bulk spin–orbit torques resulting from broken inversion symmetry. However, little work has been performed to understand the role composition gradients play in determining the bulk and local magnetic properties of these films, as well as how changes introduced through composition gradients influence the switching behavior. We utilize atomistic spin simulations to explore how the local magnetization varies in CoGd alloys, both due to the decreased coordination number at surfaces and due to vertical inhomogeneities, and how this influences the switching fields in these films. While compositional modulation varies the local compensation point through the film thickness, it has no significant effect on the net compensation temperature of the alloy if the average composition stays the same, even with large variations. However, even minor variations in composition can drastically reduce the out-of-plane coercivity or even preclude perpendicular anisotropy entirely. Furthermore, the direction of the gradient determines the surface on which field driven magnetization reversal initiates, which can have design implications for future devices. This provides new insights into the role that composition gradients in ferrimagnetics play in magnetization reversal.  more » « less
Award ID(s):
2138271
PAR ID:
10598584
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
American Institute of Physics
Date Published:
Journal Name:
AIP Advances
Volume:
15
Issue:
6
ISSN:
2158-3226
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Spin-orbit torques (SOTs) have been widely understood as an interfacial transfer of spin that is independent of the bulk properties of the magnetic layer. Here, we report that SOTs acting on ferrimagnetic Fe x Tb 1- x layers decrease and vanish upon approaching the magnetic compensation point because the rate of spin transfer to the magnetization becomes much slower than the rate of spin relaxation into the crystal lattice due to spin-orbit scattering. These results indicate that the relative rates of competing spin relaxation processes within magnetic layers play a critical role in determining the strength of SOTs, which provides a unified understanding for the diverse and even seemingly puzzling SOT phenomena in ferromagnetic and compensated systems. Our work indicates that spin-orbit scattering within the magnet should be minimized for efficient SOT devices. We also find that the interfacial spin-mixing conductance of interfaces of ferrimagnetic alloys (such as Fe x Tb 1- x ) is as large as that of 3 d ferromagnets and insensitive to the degree of magnetic compensation. 
    more » « less
  2. Abstract Magnetic insulators, such as the rare‐earth iron garnets, are promising materials for energy‐efficient spintronic memory and logic devices, and their anisotropy, magnetization, and other properties can be tuned over a wide range through selection of the rare‐earth ion. Films are typically grown as epitaxial single crystals on garnet substrates, but integration of these materials with conventional electronic devices requires growth on Si. The growth, magnetic, and spin transport properties of polycrystalline films of dysprosium iron garnet (DyIG) with perpendicular magnetic anisotropy (PMA) on Si substrates and as single crystal films on garnet substrates are reported. PMA originates from magnetoelastic anisotropy and is obtained by controlling the strain state of the film through lattice mismatch or thermal expansion mismatch with the substrates. DyIG/Si exhibits large grain sizes and bulk‐like magnetization and compensation temperature. Polarized neutron reflectometry demonstrates a small interfacial nonmagnetic region near the substrate. Spin Hall magnetoresistance measurements conducted on a Pt/DyIG/Si heterostructure demonstrate a large interfacial spin mixing conductance between the Pt and DyIG comparable to other garnet/Pt heterostructures. 
    more » « less
  3. The angle dependence of field-induced switching was investigated in magnetic tunnel junctions with in-plane magnetization and a pinned synthetic antiferromagnet reference layer. The 60 × 90 nm2 elliptical nanopillars had sharp single switches when the field was applied along the major axis of the ellipse, but even with small (20°) deviations, reversal occurred through an intermediate state. The results are interpreted with a model that includes the external applied field and the effective fields due to shape anisotropy and the fringe field of the synthetic antiferromagnet and used to extract the magnetization direction at various points in the magnetoresistance loop. The implications for faster spintronic probabilistic computing devices are discussed. 
    more » « less
  4. Efficient manipulation of antiferromagnetically coupled materials that are integration-friendly and have strong perpendicular magnetic anisotropy (PMA) is of great interest for low-power, fast, dense magnetic storage and computing. Here, we report a distinct, giant bulk damping-like spin–orbit torque in strong-PMA ferrimagnetic Fe 100− x Tb x single layers that are integration-friendly (composition-uniform, amorphous, and sputter-deposited). For sufficiently thick layers, this bulk torque is constant in the efficiency per unit layer thickness, [Formula: see text]/ t, with a record-high value of 0.036 ± 0.008 nm −1 , and the damping-like torque efficiency [Formula: see text] achieves very large values for thick layers, up to 300% for 90 nm layers. This giant bulk torque by itself switches tens of nm thick Fe 100− x Tb x layers that have very strong PMA and high coercivity at current densities as low as a few MA/cm 2 . Surprisingly, for a given layer thickness, [Formula: see text] shows strong composition dependence and becomes negative for composition where the total angular momentum is oriented parallel to the magnetization rather than antiparallel. Our findings of giant bulk spin torque efficiency and intriguing torque-compensation correlation will stimulate study of such unique spin–orbit phenomena in a variety of ferrimagnetic hosts. This work paves a promising avenue for developing ultralow-power, fast, dense ferrimagnetic storage and computing devices. 
    more » « less
  5. Spin-orbit torque (SOT) driven domain wall motion has attracted significant attention as the basis for a variety of spintronic devices due to its potential use as a high speed, low power means to manipulate the magnetic state of an object. While most previous attention has focused on ultrathin films wherein the material thickness is significantly less than the magnetic exchange length, recent reports have suggested unique dynamics may be achieved in intermediate and high thickness films. We used micromagnetic modelling to explore the role of the vertically non-uniform spin textures associated with the domain wall in nanowires of varying thickness on SOT driven domain wall motion. We found large velocity asymmetries between Bloch chiralities near the current density required for reversal of the Bloch component of the magnetization and linked these asymmetries to a gradual reorientation of the domain wall structure which drives a non-negligible, chiral Néel component of the domain wall. We further explored the influence of saturation magnetization, film thickness, the Dzyaloshinskii-Moriya interaction, and in-plane fields on domain wall dynamics. These results provide a framework for the development of SOT based devices based on domain wall motion in nanowires beyond the ultrathin film limit. 
    more » « less