Understanding student practice behavior and its connection to their learning is essential for effective recommender systems that provide personalized learning support. In this study, we apply a sequential pattern mining approach to analyze student practice behavior in a practice system for introductory Python programming. Our goal is to identify different types of practice behavior and connect them to student performance. We examine two types of practice sequences: (1) by login session and (2) by learning topic. For each sequence type, we use SPAM (Sequential PAttern Mining) to identify the most frequent micro-patterns and build behavior profiles of individual learners as vectors of micro-pattern frequencies observed in their behavior. We confirm that these vectors are stable for both sequence types (p < 0.03 for session sequences and p < 0.003 for topic sequences). Using the vectors, we perform K-means clustering where we identify two practice behaviors: example explorers and persistent finishers. We repeat this experiment using different coding approaches for student sequences and obtain similar clusters. Our results suggest that example explorers and persistent finishers might represent two typical types of divergent student behaviors in a programming practice system. Finally, to better understand the relationship between students' background knowledge, learning outcomes, and practice behavior, we perform statistical analyses to assess the significance of the associations among pre-test scores, cluster assignments, and final course grades.
more »
« less
Intelligent Technologies for Personalized Practice Systems
Personalized practice systems focus on supporting self-organized learning in a free practice mode. Adapting to the learners’ knowledge and goals, these systems help them navigate the increasing volumes of smart learning content, guide them to practice opportunities that are most appropriate to their level of knowledge and increase their motivation to practice. In this paper, we distill the experience generated by 20 years of research on personalized practice systems into a set of AI-based technologies that make these systems efficient, engaging, and user-friendly.
more »
« less
- PAR ID:
- 10598696
- Publisher / Repository:
- Japanese Society for Information and Systems in Education
- Date Published:
- Journal Name:
- Information and technology in education and learning
- Volume:
- 4
- Issue:
- 1
- ISSN:
- 2436-1712
- Page Range / eLocation ID:
- Inv-p001
- Subject(s) / Keyword(s):
- personalized practice adaptive learning navigation support content recommendation computer-science education
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Personalized recommendation of learning content is one of the most frequently cited benefits of personalized online learning. It is expected that with personalized content recommendation students will be able to build their own unique and optimal learning paths and to achieve course goals in the most optimal way. However, in many practical cases students search for learning content not to expand their knowledge, but to address problems encountered in the learning process, such as failures to solve a problem. In these cases, students could be better assisted by remedial recommendations focused on content that could help in resolving current problems. This paper presents a transparent and explainable interface for remedial recommendations in an online programming practice system. The interface was implemented to support SQL programming practice and evaluated in the context of a large database course. The paper summarizes the insights obtained from the study and discusses future work on remedial recommendations.more » « less
-
Cook, S; Katz, B; MooreRusso, D (Ed.)The relevance of upper division mathematics courses for future secondary teachers is a longstanding thorny issue. Suggested improvements include capstone courses and revised upper division content courses to explicitly address future teachers’ relevant secondary mathematics content knowledge, beliefs about teaching and learning, and experience with learning mathematics while engaging in authentic mathematical practices. In this report, we investigate prospective teachers’ reflections on their opportunities in an upper division Inquiry-Oriented Dynamical Systems course to engage in the eight Common Core State Standards for Mathematical Practice. Analysis of students’ self-reported engagement in the eight Practices revealed five practices that strongly resonated with them and the various ways that their experiences in an inquiry-oriented classroom supported meaningful and powerful engagement in these Mathematical Practices. We conclude with implications for practice.more » « less
-
Hands-on practice is a critical component of cybersecurity education. Most of the existing hands-on exercises or labs materials are usually managed in a problem-centric fashion, while it lacks a coherent way to manage existing labs and provide productive lab exercising plans for cybersecurity learners. With the advantages of big data and natural language processing (NLP) technologies, constructing a large knowledge graph and mining concepts from unstructured text becomes possible, which motivated us to construct a machine learning based lab exercising plan for cybersecurity education. In the research presented by this paper, we have constructed a knowledge graph in the cybersecurity domain using NLP technologies including machine learning based word embedding and hyperlink-based concept mining. We then utilized the knowledge graph during the regular learning process based on the following approaches: 1. We constructed a web-based front-end to visualize the knowledge graph, which allows students to browse and search cybersecurity-related concepts and the corresponding interdependence relations; 2. We created a personalized knowledge graph for each student based on their learning progress and status; 3.We built a personalized lab recommendation system by suggesting more relevant labs based on students’ past learning history to maximize their learning outcomes. To measure the effectiveness of the proposed solution, we have conducted a use case study and collected survey data from a graduate-level cybersecurity class. Our study shows that, by leveraging the knowledge graph for the cybersecurity area study, students tend to benefit more and show more interests in cybersecurity area.more » « less
-
null (Ed.)A quiet revolution is afoot in the field of law. Technical systems employing algorithms are shaping and displacing professional decision making, and they are disrupting and restructuring relationships between law firms, lawyers, and clients. Decision-support systems marketed to legal professionals to support e-discovery—generally referred to as “technology assisted review” (TAR)—increasingly rely on “predictive coding”: machine-learning techniques to classify and predict which of the voluminous electronic documents subject to litigation should be withheld or produced to the opposing side. These systems and the companies offering them are reshaping relationships between lawyers and clients, introducing new kinds of professionals into legal practice, altering the discovery process, and shaping how lawyers construct knowledge about their cases and professional obligations. In the midst of these shifting relationships—and the ways in which these systems are shaping the construction and presentation of knowledge—lawyers are grappling with their professional obligations, ethical duties, and what it means for the future of legal practice. Through in-depth, semi-structured interviews of experts in the e-discovery technology space—the technology company representatives who develop and sell such systems to law firms and the legal professionals who decide whether and how to use them in practice—we shed light on the organizational structures, professional rules and norms, and technical system properties that are shaping and being reshaped by predictive coding systems. Our findings show that AI-supported decision systems such as these are reconfiguring professional work practices. In particular, they highlight concerns about potential loss of professional agency and skill, limited understanding and thereby both over- and under reliance on decision-support systems, and confusion about responsibility and accountability as new kinds of technical professionals and technologies are brought into legal practice. The introduction of predictive coding systems and the new professional and organizational arrangements they are ushering into legal practice compound general concerns over the opacity of technical systems with specific concerns about encroachments on the construction of expert knowledge, liability frameworks, and the potential (mis)alignment of machine reasoning with professional logic and ethics. Based on our findings, we conclude that predictive coding tools—and likely other algorithmic systems lawyers use to construct knowledge and reason about legal practice— challenge the current model for evaluating whether and how tools are appropriate for legal practice. As tools become both more complex and more consequential, it is unreasonable to rely solely on legal professionals—judges, law firms, and lawyers—to determine which technologies are appropriate for use. The legal professionals we interviewed report relying on the evaluation and judgment of a range of new technical experts within law firms and, increasingly, third-party vendors and their technical experts. This system for choosing technical systems upon which lawyers rely to make professional decisions—e.g., whether documents are responsive, or whether the standard of proportionality has been met—is no longer sufficient. As the tools of medicine are reviewed by appropriate experts before they are put out for consideration and adoption by medical professionals, we argue that the legal profession must develop new processes for determining which algorithmic tools are fit to support lawyers’ decision making. Relatedly, because predictive coding systems are used to produce lawyers’ professional judgment, we argue they must be designed for contestability— providing greater transparency, interaction, and configurability around embedded choices to ensure decisions about how to embed core professional judgments, such as relevance and proportionality, remain salient and demand engagement from lawyers, not just their technical experts.more » « less
An official website of the United States government

