Discontinuities can be fairly arbitrary but also cause a significant impact on outcomes in social systems. Indeed, their arbitrariness is why they have been used to infer causal relationships among variables in numerous settings. Regression discontinuity from econometrics assumes the existence of a discontinuous variable that splits the population into distinct partitions to estimate causal effects. Here we consider the design of partitions for a given discontinuous variable to optimize a certain effect. To do so, we propose a quantization-theoretic approach to optimize the effect of interest, first learning the causal effect size of a given discontinuous variable and then applying dynamic programming for optimal quantization design of discontinuities that balance the gain and loss in the effect size. We also develop a computationally-efficient reinforcement learning algorithm for the dynamic programming formulation of optimal quantization. We demonstrate our approach by designing optimal time zone borders for counterfactuals of social capital.
more »
« less
This content will become publicly available on June 8, 2026
Dyadic Partition-Based Training Schemes for TV/TGV Denoising
Due to their ability to handle discontinuous images while having a well-understood behavior, regularizations with total variation (TV) and total generalized variation (TGV) are some of the best-known methods in image denoising. However, like other variational models including a fidelity term, they crucially depend on the choice of their tuning parameters. A remedy is to choose these automatically through multilevel approaches, for example by optimizing performance on noisy/clean image pairs. In this work, we consider such methods with space-dependent parameters which are piecewise constant on dyadic grids, with the grid itself being part of the minimization. We prove existence of minimizers for fixed discontinuous parameters under mild assumptions on the data, which lead to existence of finite optimal partitions. We further establish that these assumptions are equivalent to the commonly used box constraints on the parameters. On the numerical side, we consider a simple subdivision scheme for optimal partitions built on top of any other bilevel optimization method for scalar parameters, and demonstrate its improved performance on some representative test images when compared with constant optimized parameters.
more »
« less
- Award ID(s):
- 2205627
- PAR ID:
- 10598764
- Editor(s):
- Morel, Jean Michel
- Publisher / Repository:
- Springer Nature
- Date Published:
- Journal Name:
- Journal of mathematical imaging and vision
- Volume:
- 66
- ISSN:
- 1573-7683
- Page Range / eLocation ID:
- 1070-1108
- Subject(s) / Keyword(s):
- Total variation Total generalized variation Discontinuous weights Spatially_dependent regularization parameters Box constraint· Bilevel optimization
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Image registration is broadly used in various scenarios in which similar scenes in different images are to be aligned. However, image registration becomes challenging when the contrasts and backgrounds in the images are vastly different. This work proposes using the total variation of the difference map between two images (TVDM) as a dissimilarity metric in rigid registration. A method based on TVDM minimization is implemented for image rigid registration. The method is tested with both synthesized and real experimental data that have various noise and background conditions. The performance of the proposed method is compared with the results of other rigid registration methods. It is demonstrated that the proposed method is highly accurate and robust and outperforms other methods in all of the tests. The new algorithm provides a robust option for image registrations that are critical to many nano-scale X-ray imaging and microscopy applications.more » « less
-
In a class of piecewise-constant image segmentation models, we propose to incorporate a weighted difference of anisotropic and isotropic total variation (AITV) to regularize the partition boundaries in an image. In particular, we replace the total variation regularization in the Chan--Vese segmentation model and a fuzzy region competition model by the proposed AITV. To deal with the nonconvex nature of AITV, we apply the difference-of-convex algorithm (DCA), in which the subproblems can be minimized by the primal-dual hybrid gradient method with linesearch. The convergence of the DCA scheme is analyzed. In addition, a generalization to color image segmentation is discussed. In the numerical experiments, we compare the proposed models with the classic convex approaches and the two-stage segmentation methods (smoothing and then thresholding) on various images, showing that our models are effective in image segmentation and robust with respect to impulsive noises.more » « less
-
Abstract Partitioning networks into communities of densely connected nodes is an important tool used widely across different applications, with numerous methods and software packages available for community detection. Modularity-based methods require parameters to be selected (or assume defaults) to control the resolution and, in multilayer networks, interlayer coupling. Meanwhile, most useful algorithms are heuristics yielding different near-optimal results upon repeated runs (even at the same parameters). To address these difficulties, we combine recent developments into a simple-to-use framework for pruning a set of partitions to a subset that are self-consistent by an equivalence with the objective function for inference of a degree-corrected planted partition stochastic block model (SBM). Importantly, this combined framework reduces some of the problems associated with the stochasticity that is inherent in the use of heuristics for optimizing modularity. In our examples, the pruning typically highlights only a small number of partitions that are fixed points of the corresponding map on the set of somewhere-optimal partitions in the parameter space. We also derive resolution parameter upper bounds for fitting a constrained SBM ofKblocks and demonstrate that these bounds hold in practice, further guiding parameter space regions to consider. With publicly available code (http://github.com/ragibson/ModularityPruning), our pruning procedure provides a new baseline for using modularity-based community detection in practice.more » « less
-
A bounded cost path planning method is developed for underwater vehicles assisted by a data-driven flow modeling method. The modeled flow field is partitioned as a set of cells of piece-wise constant flow speed. A flow partition algorithm and a parameter estimation algorithm are proposed to learn the flow field structure and parameters with justified convergence. A bounded cost path planning algorithm is developed taking advantage of the partitioned flow model. An extended potential search method is proposed to determine the sequence of partitions that the optimal path crosses. The optimal path within each partition is then determined by solving a constrained optimization problem. Theoretical justification is provided for the proposed extended potential search method generating the optimal solution. The path planned has the highest probability to satisfy the bounded cost constraint. The performance of the algorithms is demonstrated with experimental and simulation results, which show that the proposed method is more computationally efficient than some of the existing methods.more » « less
An official website of the United States government
