skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on May 21, 2026

Title: Physics of Pair-producing Gaps in Black Hole Magnetospheres: Two-dimensional General Relativistic Particle-in-cell Simulations
Abstract Black holes can launch powerful jets through the Blandford–Znajek process. This relies on enough plasma in the jet funnel to conduct the necessary current. However, in some low-luminosity active galactic nuclei, the plasma supply near the jet base may be an issue. It has been proposed that spark gaps—local regions with unscreened electric field—can form in the magnetosphere, accelerating particles to initiate pair cascades, thus filling the jet funnel with plasma. In this paper, we carry out 2D general relativistic particle-in-cell (GRPIC) simulations of the gap, including self-consistent treatment of inverse Compton scattering and pair production. We observe gap dynamics that is fully consistent with our earlier 1D GRPIC simulations. We find strong dependence of the gap power on the soft photon spectrum and energy density, as well as the strength of the horizon magnetic field. We derive physically motivated scaling relations, and applying to M87, we find that the gap may be energetically viable for the observed TeV flares. For Sgr A*, the energy dissipated in the gap may also be sufficient to power the X-ray flares.  more » « less
Award ID(s):
2206608 2308111
PAR ID:
10598779
Author(s) / Creator(s):
; ;
Publisher / Repository:
The American Astronomical Society
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
985
Issue:
2
ISSN:
0004-637X
Page Range / eLocation ID:
159
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract It was recently proposed that the electric field oscillation as a result of self-consistente±pair production may be the source of coherent radio emission from pulsars. Direct particle-in-cell simulations of this process have shown that the screening of the parallel electric field by this pair cascade manifests as a limit cycle, as the parallel electric field is recurrently induced when pairs produced in the cascade escape from the gap region. In this work, we develop a simplified time-dependent kinetic model ofe±pair cascades in pulsar magnetospheres that can reproduce the limit-cycle behavior of pair production and electric field screening. This model includes the effects of a magnetospheric current, the escape ofe±, as well as the dynamic dependence of pair production rate on the plasma density and energy. Using this simple theoretical model, we show that the power spectrum of electric field oscillations averaged over many limit cycles is compatible with the observed pulsar radio spectrum. 
    more » « less
  2. Abstract Active galactic nuclei in general, and the supermassive black hole in M87 in particular, show bright and rapid gamma-ray flares up to energies of 100 GeV and above. For M87, the flares show multiwavelength components, and the variability timescale is comparable to the dynamical time of the event horizon, suggesting that the emission may come from a compact region near the nucleus. However, the emission mechanism for these flares is not well understood. Recent high-resolution general-relativistic magnetohydrodynamic simulations show the occurrence of episodic magnetic reconnection events that can power flares near the black hole event horizon. In this work, we analyze the radiative properties of the reconnecting current layer under the extreme plasma conditions applicable to the black hole in M87 from first principles. We show that abundant pair production is expected in the vicinity of the reconnection layer, to the extent that the produced secondary pair plasma dominates the reconnection dynamics. Using analytic estimates backed by two-dimensional particle-in-cell simulations, we demonstrate that in the presence of strong synchrotron cooling, reconnection can produce a hard power-law distribution of pair plasma imprinted in the outgoing synchrotron (up to a few tens of MeV) and the inverse-Compton signal (up to TeV). We produce synthetic radiation spectra from our simulations, which can be directly compared with the results of future multiwavelength observations of M87* flares. 
    more » « less
  3. Abstract We present the results of 3D particle-in-cell simulations that explore relativistic magnetic reconnection in pair plasma with strong synchrotron cooling and a small mass fraction of nonradiating ions. Our results demonstrate that the structure of the current sheet is highly sensitive to the dynamic efficiency of radiative cooling. Specifically, stronger cooling leads to more significant compression of the plasma and magnetic field within the plasmoids. We demonstrate that ions can be efficiently accelerated to energies exceeding the plasma magnetization parameter, ≫σ, and form a hard power-law energy distribution,fi∝γ−1. This conclusion implies a highly efficient proton acceleration in the magnetospheres of young pulsars. Conversely, the energies of pairs are limited to eitherσin the strong cooling regime or the radiation burnoff limit,γsyn, when cooling is weak. We find that the high-energy radiation from pairs above the synchrotron burnoff limit,εc≈ 16 MeV, is only efficiently produced in the strong cooling regime,γsyn<σ. In this regime, we find that the spectral cutoff scales asεcut≈εc(σ/γsyn) and the highest energy photons are beamed along the direction of the upstream magnetic field, consistent with the phenomenological models of gamma-ray emission from young pulsars. Furthermore, our results place constraints on the reconnection-driven models of gamma-ray flares in the Crab Nebula. 
    more » « less
  4. Abstract We present the results of 3D particle-in-cell simulations that explore relativistic magnetic reconnection in pair plasma with strong synchrotron cooling and a small mass fraction of nonradiating ions. Our results demonstrate that the structure of the current sheet is highly sensitive to the dynamic efficiency of radiative cooling. Specifically, stronger cooling leads to more significant compression of the plasma and magnetic field within the plasmoids. We demonstrate that ions can be efficiently accelerated to energies exceeding the plasma magnetization parameter, ≫σ, and form a hard power-law energy distribution,fi∝γ−1. This conclusion implies a highly efficient proton acceleration in the magnetospheres of young pulsars. Conversely, the energies of pairs are limited to eitherσin the strong cooling regime or the radiation burnoff limit,γsyn, when cooling is weak. We find that the high-energy radiation from pairs above the synchrotron burnoff limit,εc≈ 16 MeV, is only efficiently produced in the strong cooling regime,γsyn<σ. In this regime, we find that the spectral cutoff scales asεcut≈εc(σ/γsyn) and the highest energy photons are beamed along the direction of the upstream magnetic field, consistent with the phenomenological models of gamma-ray emission from young pulsars. Furthermore, our results place constraints on the reconnection-driven models of gamma-ray flares in the Crab Nebula. 
    more » « less
  5. Abstract We use the public code ebhlight to carry out 3D radiative general relativistic magnetohydrodynamics (GRMHD) simulations of accretion on to the supermassive black hole in M87. The simulations self-consistently evolve a frequency-dependent Monte Carlo description of the radiation field produced by the accretion flow. We explore two limits of accumulated magnetic flux at the black hole (SANE and MAD), each coupled to several subgrid prescriptions for electron heating that are motivated by models of turbulence and magnetic reconnection. We present convergence studies for the radiation field and study its properties. We find that the near-horizon photon energy density is an order of magnitude higher than is predicted by simple isotropic estimates from the observed luminosity. The radially dependent photon momentum distribution is anisotropic and can be modeled by a set of point-sources near the equatorial plane. We draw properties of the radiation and magnetic field from the simulation and feed them into an analytic model of gap acceleration to estimate the very high energy (VHE) γ-ray luminosity from the magnetized jet funnel, assuming that a gap is able to form. We find luminosities of $$\rm \sim 10^{41} \, erg \, s^{-1}$$ for MAD models and $$\rm \sim 2\times 10^{40} \, erg \, s^{-1}$$ for SANE models, which are comparable to measurements of M87’s VHE flares. The time-dependence seen in our calculations is insufficient to explain the flaring behaviour. Our results provide a step towards bridging theoretical models of near-horizon properties seen in black hole images with the VHE activity of M87. 
    more » « less