- Award ID(s):
- 1903335
- Publication Date:
- NSF-PAR ID:
- 10329499
- Journal Name:
- Monthly Notices of the Royal Astronomical Society
- Volume:
- 507
- Issue:
- 4
- Page Range or eLocation-ID:
- 4864 to 4878
- ISSN:
- 0035-8711
- Sponsoring Org:
- National Science Foundation
More Like this
-
The Event Horizon Telescope (EHT) collaboration has produced the first resolved images of M87*, the supermassive black hole at the centre of the elliptical galaxy M87. As both technology and analysis pipelines improve, it will soon become possible to produce spectral index maps of black hole accretion flows on event horizon scales. In this work, we predict spectral index maps of both M87* and Sgr A* by applying the general relativistic radiative transfer (GRRT) code ipole to a suite of general relativistic magnetohydrodynamic (GRMHD) simulations. We analytically explore how the spectral index increases with increasing magnetic field strength, electron temperature, and optical depth. Consequently, spectral index maps grow more negative with increasing radius in almost all models, since all of these quantities tend to be maximized near the event horizon. Additionally, photon ring geodesics exhibit more positive spectral indices, since they sample the innermost regions of the accretion flow with the most extreme plasma conditions. Spectral index maps are sensitive to highly uncertain plasma heating prescriptions (the electron temperature and distribution function). However, if our understanding of these aspects of plasma physics can be tightened, even the spatially unresolved spectral index around 230 GHz can be used to discriminate betweenmore »
-
ABSTRACT The Event Horizon Telescope (EHT) collaboration has produced the first resolved images of the supermassive black holes at the centre of our galaxy and at the centre of the elliptical galaxy M87. As both technology and analysis pipelines improve, it will soon become possible to produce spectral index maps of black hole accretion flows on event horizon scales. In this work, we predict spectral index maps of both M87* and Sgr A* by applying the general relativistic radiative transfer (GRRT) code ipole to a suite of general relativistic magnetohydrodynamic (GRMHD) simulations. We analytically show that the spectral index increases with increasing magnetic field strength, electron temperature, and optical depth. Consequently, spectral index maps grow more negative with increasing radius in almost all models, since all of these quantities tend to be maximized near the event horizon. Additionally, photon ring geodesics exhibit more positive spectral indices, since they sample the innermost regions of the accretion flow with the most extreme plasma conditions. Spectral index maps are sensitive to highly uncertain plasma heating prescriptions (the electron temperature and distribution function). However, if our understanding of these aspects of plasma physics can be tightened, even the spatially unresolved spectral index around 230 GHzmore »
-
The Event Horizon Telescope (EHT) recently released the first horizon-scale images of the black hole in M87. Combined with other astronomical data, these images constrain the mass and spin of the hole as well as the accretion rate and magnetic flux trapped on the hole. An important question for the EHT is how well key parameters, such as trapped magnetic flux and the associated disk models, can be extracted from present and future EHT VLBI data products. The process of modeling visibilities and analyzing them is complicated by the fact that the data are sparsely sampled in the Fourier domain while most of the theory/simulation is constructed in the image domain. Here we propose a data- driven approach to analyze complex visibilities and closure quantities for radio interferometric data with neural networks. Using mock interferometric data, we show that our neural networks are able to infer the accretion state as either high magnetic flux (MAD) or low magnetic flux (SANE), suggesting that it is possible to perform parameter extraction directly in the visibility domain without image reconstruction. We have applied VLBInet to real M87 EHT data taken on four di↵erent days in 2017 (April 5, 6, 10, 11), and ourmore »
-
ABSTRACT Wind-fed models offer a unique way to form predictive models of the accretion flow surrounding Sagittarius A*. We present 3D wind-fed magnetohydrodynamic (MHD) and general relativistic magnetohydrodynamic (GRMHD) simulations spanning the entire dynamic range of accretion from parsec scales to the event horizon. We expand on previous work by including non-zero black hole spin and dynamically evolved electron thermodynamics. Initial conditions for these simulations are generated from simulations of the observed Wolf–Rayet stellar winds in the Galactic Centre. The resulting flow tends to be highly magnetized (β ≈ 2) with an ∼r−1 density profile independent of the strength of magnetic fields in the winds. Our simulations reach the magnetically arrested disc (MAD) state for some, but not all cases. In tilted flows, standard and normal evolution (SANE) jets tend to align with the angular momentum of the gas at large scales, even if that direction is perpendicular to the black hole spin axis. Conversely, MAD jets tend to align with the black hole spin axis. The gas angular momentum shows similar behaviour: SANE flows tend to only partially align while MAD flows tend to fully align. With a limited number of dynamical free parameters, our models can produce accretion rates,more »
-
ABSTRACT Faraday rotation has been seen at millimeter wavelengths in several low-luminosity active galactic nuclei, including Event Horizon Telescope (EHT) targets M87* and Sgr A*. The observed rotation measure (RM) probes the density, magnetic field, and temperature of material integrated along the line of sight. To better understand how accretion disc conditions are reflected in the RM, we perform polarized radiative transfer calculations using a set of general relativistic magnetohydrodynamic (GRMHD) simulations appropriate for M87*. We find that in spatially resolved millimetre wavelength images on event horizon scales, the RM can vary by orders of magnitude and even flip sign. The observational consequences of this spatial structure include significant time-variability, sign-flips, and non-λ2 evolution of the polarization plane. For some models, we find that internal RM can cause significant bandwidth depolarization even across the relatively narrow fractional bandwidths observed by the EHT. We decompose the linearly polarized emission in these models based on their RM and find that emission in front of the mid-plane can exhibit orders of magnitude less Faraday rotation than emission originating from behind the mid-plane or within the photon ring. We confirm that the spatially unresolved (i.e. image integrated) RM is a poor predictor of themore »