Tong, Xin; Wu, Jiang; Wang, Zhiming
(Ed.)
Colloidal semiconductor quantum dot/graphene van der Waals heterostructure nanohybrids are emerging technologies for photodetection. These nanohybrids combine the advantages of the enhanced light-matter interaction and spectral tunability of quantum dots (QDs) and superior charge mobility in graphene, providing an affordable alternative for uncooled photodetectors with high gain or external quantum efficiency in a wide spectral range. In particular, the interfacing of QDs with high-mobility graphene as a charge transport pathway has provided an effective resolution to the critical issue of charge transport in QD-only photodetectors stemming from the low charge mobility associated with both QD surface defect states and QD-QD junctions. Furthermore, the achieved capability in industrial-scale fabrication of graphene, colloidal QDs, and QD/graphene nanohybrids has motivated efforts in researches of focal plane arrays that are expected to be not only high performance and low cost but also lightweight, flexible, and wearable. This chapter aims to provide an up-to-date review of the recent progress made in the research of QD/graphene nanohybrid photodetectors, together with a discussion on the challenges remaining and perspective in future research and development to make QD/graphene nanohybrids competitive for commercialization.
more »
« less