Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract Colloidal quantum dots (QDs)/graphene nanohybrids provide a unique platform to design photodetectors of high performance. These photodetectors are quantum sensors due to the strong quantum confinement in QDs for spectral tunability, and in graphene for high charge mobility. Quantitatively, the high carrier mobility of graphene plays a critical role to enable high photoconductive gain and understanding its impact on the photodetector performance is imperative. Herein, we report a comparative study of PbS QDs/graphene nanohybrids with monolayer and bilayer graphene for broadband photodetection ranging from ultraviolet, visible, near-infrared to short-wave infrared spectra (wavelength: 400 nm–1750 nm) to determine if a specific advantage exists for one over the other. This study has revealed that both the monolayer and bilayer graphene grown in chemical vapor deposition can provide a highly efficient charge transfer channel for photo-generated carriers for high broadband photoresponse.more » « less
- 
            Abstract Photodetectors based on colloidal quantum dots (QD)/graphene nanohybrids are quantum sensors due to strong quantum confinement in both QD and graphene. The optoelectronic properties of QD/graphene nanohybrids are affected by the quantum physics that predicts a high photoconductive gain and hence photoresponsivity (R*) depending on the pixel length (L) asR*∝L−2. Experimental confirmation of the effect of the pixel geometric parameters on the optoelectronic properties of the QD/graphene photodetector is therefore important to elucidate the underlying quantum physics. Motivated by this, an array of PbS QDs/graphene nanohybrid photodetectors are designed with variable QD/graphene pixel lengthLand width (W) in the range of 10–150 µm for a study ofR*, noise, and specific detectivity (D*) in a broad spectrum of 400–1500 nm. Intriguingly,R*exhibits a monotonic decreasing trend of 1/L2while being independent ofW, confirming experimentally the theoretical prediction. Interestingly, this geometric effect on the photoresponsivity seems to be partially compensated by that in noise, leading toD*independent ofLandWat wavelengths in the ultraviolet‐visible‐near infrared range. This result sheds light on the quantum physics underlying the optoelectronic process in QD/graphene nanohybrids, which is important to the design of high‐quality QD/graphene photodetectors and imaging systems.more » « less
- 
            Abstract Ultrathin (sub-2 nm) Al2O3/MgO memristors were recently developed using anin vacuoatomic layer deposition (ALD) process that minimizes unintended defects and prevents undesirable leakage current. These memristors provide a unique platform that allows oxygen vacancies (VO) to be inserted into the memristor with atomic precision and study how this affects the formation and rupture of conductive filaments (CFs) during memristive switching. Herein, we present a systematic study on three sets of ultrathin Al2O3/MgO memristors with VO-doping via modular MgO atomic layer insertion into an otherwise pristine insulating Al2O3atomic layer stack (ALS) using anin vacuoALD. At a fixed memristor thickness of 17 Al2O3/MgO atomic layers (∼1.9 nm), the properties of the memristors were found to be affected by the number and stacking pattern of the MgO atomic layers in the Al2O3/MgO ALS. Importantly, the trend of reduced low-state resistance and the increasing appearance of multi-step switches with an increasing number of MgO atomic layers suggests a direct correlation between the dimension and dynamic evolution of the conducting filaments and the VOconcentration and distribution. Understanding such a correlation is critical to an atomic-scale control of the switching behavior of ultrathin memristors.more » « less
- 
            Nanohybrids of graphene and colloidal semiconductor quantum dots (QDs/Gr) provide a promising quantum sensing scheme for photodetection. Despite exciting progress made in QDs/Gr photodetectors in broadband from ultraviolet to short-wave infrared, the device performance is limited in middle-wave infrared (MWIR) detection. A fundamental question arises as to whether the thermal noiseinduced dark current and hence poor signal-to-noise ratio in conventional uncooled MWIR photodetectors persist in QDs/ Gr nanohybrids. Herein, we investigated noise, responsivity (R*), and specific detectivity (D*) in HgTe QDs/Gr nanohybrids, revealing that the noise and R* are decoupled in nanohybrids and each can be optimized independently toward its theoretical limit. Specifically, the noise in the QDs/Gr nanohybrids is dominated by that of graphene with a negligible effect from the dark current in HgTe QDs and can be optimized to its intrinsic limit by removing charge doping of adsorbed polar molecules on graphene. Furthermore, the R* is proportional to the photoconductive gain enabled by the strong quantum confinement in QDs and Gr. Achieving high gain in the MWIR spectrum, however, is challenging and requires elimination of charge traps primarily from the surface states of the narrow-bandgap semiconductor HgTe QDs. Using grain-rotation-induced grain-coalescence growth of single-layer and core/shell HgTe QDs, we show the that HgTe QDs surface states caused by Te deficiency can be dramatically suppressed, resulting in high gain up to 4.0 × 107 in the MWIR spectrum. The optimized noise and R* have led to high uncooled MWIR D* up to 2.4 × 1011 Jones, making nanohybrids promising to surpass the fundamental dark-current limit in conventional photodetectors.more » « lessFree, publicly-accessible full text available March 11, 2026
- 
            High critical current (Ic) in high magnetic fields (B) with minimal variations with respect to the orientation of the B field is demanded by many applications such as high-field magnets for fusion systems. Motivated by this, this work studies 6 vol. % BaZrO3/YBa2Cu3O7 (BZO/YBCO) multilayer nanocomposite films by stacking two 10 nm thick Ca0.3Y0.7Ba2Cu3O7 (CaY-123) spacers with three BZO/YBCO layers of thickness varied from 50 to 330 nm to make the total film thickness of 150–1000 nm. The Ca diffusion from the spacers into BZO/YBCO was shown to dramatically enhance pinning efficiency of c-axis aligned BZO nanorods, which yields high and almost thickness independent critical current density (Jc) in the BZO/YBCO multilayer nanocomposite films. Remarkably, enhanced Jc was observed in these multilayer samples at a wide temperature range of 20–80 K and magnetic fields up to 9.0 T. In particular, the thicker BZO/YBCO multilayer films outperform their thinner counterparts in both higher value and less anisotropy of Jc at lower temperatures and higher fields. At 20 K and 9.0 T, Ic is up to 654 A/cm-width at B//c in the 6% multilayer (1000 nm) sample, which is close to 753 A/cm-width at B//ab due to the intrinsic pinning. This result illustrates the critical role of the Ca cation diffusion into the YBCO lattice in achieving high and isotropic pinning in thick BZO/YBCO multilayer films.more » « less
- 
            Single-atom catalysts have the advantage of high chemical efficiency, which requires atomic-scale control during catalyst formation. In order to address this challenge, this work explores the synthesis of single-atom platinum (SA-Pt) catalysts using atomic-layer deposition (ALD) on vertical graphene (VG), in which a large number of graphene edges serve as energetically favorable nucleation sites for SA-Pt, as predicted by density functional theory calculations. Interestingly, SA-Pt has been achieved on VGs at low ALD cycle numbers of up to 60. With a further increase in the number of ALD cycles, an increasing number of Pt clusters with diameters <2 nm and Pt nanoparticles (NPs) with diameters >2 nm become dominant (nano-Pt @VG). This is in contrast to the observation of predominantly nano-Pt on other carbon nanostructures, such as carbon nanotubes and monolayer graphene, under the same ALD growth conditions, indicating that the edge states on VG indeed play a critical role in facilitating the formation of SA-Pt. Profound differences are revealed in a comparative study on H2 sensing. SA-Pt exhibits both a higher sensitivity and faster response than its nano-Pt counterpart by more than an order of magnitude, illustrating the high catalytic efficiency of SAPt and its potential for gas sensing and a variety of other catalytic applications.more » « less
- 
            One-dimensional artificial pinning centers (1D-APCs) in YBa2Cu3O7-x nanocomposite films provide strong collective pinning at magnetic field B//c-axis. In this work, we reveal a 1D-APC/YBa2Cu3O7-x interface is preferred for high pinning efficiency of individual 1D-APCs including BaHfO3 and BaZrO3. The coherent 1D-APC/YBa2Cu3O7-x interface may be obtained via either growth of the nanocomposite films at optimal condition or Ca-diffusion to dynamically reduce the interface strain during the nanocomposite film growth. Interestingly, the high pinning efficiency of the 1D-APCs with coherent interfaces with YBCO not only lead to a high critical current density (Jc) in magnetic fields up to 9.0 T at H//c-axis but also enhanced Jc over a larger angular range when H is away from H//c-axis up to θ=60-80 degree than that in the case the interface is defective. This result suggests the importance of understanding and engineering the APC/YBCO interface for optimal pinning in nanocomposite films.more » « less
- 
            Colloidal quantum dots/graphene (QD/Gr) nanohybrids have been studied intensively for photodetection in a broadband spectrum including ultraviolet, visible, near-infrared, and shortwave infrared (UV−vis-NIR-SWIR). Since the optoelectronic process in the QD/Gr nanohybrid relies on the photogenerated charge carrier transfer from QDs to graphene, understanding the role of the QD−QD and QD−Gr interfaces is imperative to the QD/Gr nanohybrid photodetection. Herein, a systematic study is carried out to probe the effect of these interfaces on the noise, photoresponse, and specific detectivity in the UV−vis-NIR-SWIR spectrum. Interestingly, the photoresponse has been found to be negligible without a 3-mercaptopropionic acid (MPA) ligand exchange, moderate with a single ligand exchange after all QD layers are deposited on graphene, and maximum if it is performed after each QD layer deposition up to five layers of total QD thickness of 260−280 nm. Furthermore, exposure of graphene to C-band UV (UVC) for a short period of 4−5 min before QD deposition leads to improved photoresponse via removal of polar molecules at the QD/Gr interface. With the combination of the MPA ligand exchange and UVC exposure, optimal optoelectronic properties can be obtained on the PbS QD/Gr nanohybrids with high specific detectivity up to 2.6 × 1011, 1.5 × 1011, 5 × 1010, and 1.9 × 109 Jones at 400, 550, 1000, and 1700 nm, respectively, making the nanohybrids promising for broadband photodetection.more » « less
- 
            Surface-enhanced Raman spectroscopy (SERS) is an important analytical tool with ultrahigh sensitivity that depends on electromagnetic mechanism (EM) and chemical mechanism (CM). The CM relies on efficient charge transfer between the probe molecules and SERS substrates, which means engineering the molecule attachment and the energy level alignment at the molecule/substrate interface is critical to optimal CM enhancement. Herein, we report enhanced CM of Rhodamine 6G (R6G) on graphene SERS substrates using combined C-band ultraviolet (UVC) irradiation and Pt nanoparticle (Pt-NPs) decoration using atomic layer deposition (ALD). An enhancement of 270% was obtained in the former, which is ascribed to the graphene surface activation and p-doping on graphene for improved R6G molecule attachment and charge transfer by its surface change from hydrophobic to hydrophilic and the down-shift of the Fermi energy (p-doping) after UVC exposure. The Pt-NPs decoration adds an additional enhancement of 250% by further p-doping graphene, which shifts the graphene’s Fermi energy to promote charge (hole) transfer at the R6G/graphene interface. Remarkably, the combination of the UVC irradiation and Pt-NPs decoration has led to enhanced R6G SERS sensitivity of 5 × 10−9 M, which represents a two-orders of magnitude enhancement over that on the pristine graphene and illustrates the importance of graphene engineering for optimal probe molecule attachment and the energy level alignment at the molecule/graphene interface toward achieving high-performance SERS biosensing.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
