skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A meta-analysis of whole-body and heart mass effect sizes from a long-term artificial selection experiment for high voluntary exercise
ABSTRACT Selection experiments play an increasingly important role in comparative and evolutionary physiology. However, selection experiments can be limited by relatively low statistical power, in part because replicate line is the experimental unit for analyses of direct or correlated responses (rather than number of individuals measured). One way to increase the ability to detect correlated responses is through a meta-analysis of studies for a given trait across multiple generations. To demonstrate this, we applied meta-analytic techniques to two traits (body mass and heart ventricle mass, with body mass as a covariate) from a long-term artificial selection experiment for high voluntary wheel-running behavior. In this experiment, all four replicate High Runner (HR) lines reached apparent selection limits around generations 17–27, running approximately 2.5- to 3-fold more revolutions per day than the four non-selected Control (C) lines. Although both traits would also be expected to change in HR lines (relative heart size expected to increase, expected direction for body mass is less clear), their statistical significance has varied, despite repeated measurements. We compiled information from 33 unique studies and calculated a measure of effect size (Pearson's R). Our results indicate that, despite a lack of statistical significance in most generations, HR mice have evolved larger hearts and smaller bodies relative to controls. Moreover, plateaus in effect sizes for both traits coincide with the generational range during which the selection limit for wheel-running behavior was reached. Finally, since reaching the selection limit, absolute effect sizes for body mass and heart ventricle mass have become smaller (i.e. closer to 0).  more » « less
Award ID(s):
2038528
PAR ID:
10599091
Author(s) / Creator(s):
;
Publisher / Repository:
The Company of Biologists Limited
Date Published:
Journal Name:
Journal of Experimental Biology
Volume:
227
Issue:
17
ISSN:
0022-0949
Page Range / eLocation ID:
jeb249213
Subject(s) / Keyword(s):
Body size Constraints Correlated responses Genetic churn Multiple solutions Wheel running
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. How traits at multiple levels of biological organization evolve in a correlated fashion in response to directional selection is poorly understood, but two popular models are the very general “behavior evolves first” (BEF) hypothesis and the more specific “morphology-performance-behavior-fitness” (MPBF) paradigm. Both acknowledge that selection often acts relatively directly on behavior and that when behavior evolves, other traits will as well but most with some lag. However, this proposition is exceedingly difficult to test in nature. Therefore, we studied correlated responses in the high-runner (HR) mouse selection experiment, in which four replicate lines have been bred for voluntary wheel-running behavior and compared with four non-selected control (C) lines. We analyzed a wide range of traits measured at generations 20–24 (with a focus on new data from generation 22), coinciding with the point at which all HR lines were reaching selection limits (plateaus). Significance levels (226 P values) were compared across trait types by ANOVA, and we used the positive false discovery rate to control for multiple comparisons. This meta-analysis showed that, surprisingly, the measures of performance (including maximal oxygen consumption during forced exercise) showed no evidence of having diverged between the HR and C lines, nor did any of the life history traits (e.g., litter size), whereas body mass had responded (decreased) at least as strongly as wheel running. Overall, results suggest that the HR lines of mice had evolved primarily by changes in motivation rather than performance ability at the timethey were reaching selection limits. In addition, neither the BEF model nor the MPBF model of hierarchical evolution provides a particularly good fit to theHRmouse selection experiment. 
    more » « less
  2. ABSTRACT In general, sustained high rates of physical activity require a high maximal aerobic capacity (V̇O2,max), which may also necessitate a high basal aerobic metabolism (BMR), given that the two metabolic states are linked via shared organ systems, cellular properties and metabolic pathways. We tested the hypotheses that (a) selective breeding for high voluntary exercise in mice would elevate both V̇O2,max and BMR, and (b) these increases are accompanied by increases in the size of some internal organs (ventricle, triceps surae muscle, liver, kidney, spleen, lung, brain). We measured 72 females from generations 88 and 96 of an ongoing artificial selection experiment comprising four replicate High Runner (HR) lines bred for voluntary daily wheel-running distance and four non-selected control lines. With body mass as a covariate, HR lines as a group had significantly higher V̇O2,max (+13.6%, P<0.0001), consistent with previous studies, but BMR did not significantly differ between HR and control lines (+6.5%, P=0.181). Additionally, HR mice did not statistically differ from control mice for whole-body lean or fat mass, or for the mass of any organ collected (with body mass as a covariate). Finally, mass-independent V̇O2,max and BMR were uncorrelated (r=0.073, P=0.552) and the only statistically significant correlation with an organ mass was for V̇O2,max and ventricle mass (r=0.285, P=0.015). Overall, our results indicate that selection for a behavioral trait can yield large changes in behavior without proportional modifications to underlying morphological or physiological traits. 
    more » « less
  3. Abstract Artificial selection yielded four replicate high runner (HR) lines of mice that reached apparent selection limits (~ threefold increase in wheel revolutions per day vs. four control lines), despite maintenance of additive genetic variance. After 68 generations, we used animal models to test for changes in additive-genetic variances and covariance of the two measured components (average speed and duration) of running distance. We also attempted to break the selection limit by crossing two HR lines, then continuing directional selection on this hybrid line and on the two parental lines for nine generations. The genetic correlation between speed and duration was positive in the base population, but evolved to be negative in the two parental HR lines. Although heritability for both speed and duration (but not distance) increased in the hybrid line, their genetic correlation remained negative. Hybrid F1mice from generation 68 parents showed heterosis for running distance, which was lost in subsequent generations, and the hybrid line did not exceed the limit. Both male and female hybrids ran faster than parental lines for most generations, but running duration was intermediate or reduced, reflecting their negative genetic correlation. The evolved genetic trade-off between speed and duration may explain the inability for the hybrid line to break the selection limit for distance run, despite renewed additive genetic variance for at least one of its component traits. 
    more » « less
  4. none (Ed.)
    In various organisms, sequencing of selectively bred lines at apparent selection limits has demonstrated that genetic variation can remain at many loci, implying that evolution at the genetic level may continue even if the population mean phenotype remains constant. We compared selection signatures at generations 22 and 61 of the “High Runner” mouse experiment, which includes 4 replicate lines bred for voluntary wheel-running behavior (HR) and 4 non-selected control (C) lines. Previously, we reported multiple regions of differentiation between the HR and C lines, based on whole-genome sequence data for 10 mice from each line at generation 61, which was >31 generations after selection limits had been reached in all HR lines. Here, we analyzed pooled sequencing data from ~20 mice for each of the 8 lines at generation 22, around when HR lines were reaching limits. Differentiation analyses of allele frequencies at ~4.4 million SNP loci used the regularized T-test and detected 258 differentiated regions with FDR = 0.01. Comparable analyses involving pooling generation 61 individual mouse genotypes into allele frequencies by line produced only 11 such regions, with almost no overlap among the largest and most statistically significant peaks between the two generations. These results implicate a sort of “genetic churn” that continues at loci relevant for running. Simulations indicate that loss of statistical power due to random genetic drift and sampling error are insufficient to explain the differences in selection signatures. The 13 differentiated regions at generation 22 with strict culling measures include 79 genes related to a wide variety of functions. Gene ontology identified pathways related to olfaction and vomeronasal pathways as being overrepresented, consistent with generation 61 analyses, despite those specific regions differing between generations. GenesDsppandRbm24are also identified as potentially explaining known bone and skeletal muscle differences, respectively, between the linetypes. 
    more » « less
  5. Abstract Selection experiments can elucidate the varying course of adaptive changes across generations. We examined the appendicular skeleton of house mice from four replicate High Runner (HR) lines bred for physical activity on wheels and four non‐selected Control (C) lines. HR mice reached apparent selection limits between generations 17 and 27, running ~3‐fold more than C. Studies at generations 11, 16, and 21 found that HR mice had evolved thicker hindlimb bones, heavier feet, and larger articular surface areas of the knee and hip joint. Based on biomechanical theory, any or all of these evolved differences may be beneficial for endurance running. Here, we studied mice from generation 68, plus a limited sample from generation 58, to test whether the skeleton continued to evolve after selection limits were reached. Contrary to our expectations, we found few differences between HR and C mice for these later generations, and some of the differences in bone dimensions identified in earlier generations were no longer statistically significant. We hypothesize that the loss of apparently coadapted lower‐level traits reflects (1) deterioration related to a gradual increase in inbreeding and/or (2) additional adaptive changes that replace the functional benefits of some skeletal changes. 
    more » « less