Central to the development and survival of all organisms is the regulation of gene expression, which begins with the process of transcription catalyzed by RNA polymerases. During transcription of protein-coding genes, the general transcription factors (GTFs) work alongside RNA polymerase II (Pol II) to assemble the preinitiation complex at the transcription start site, open the promoter DNA, initiate synthesis of the nascent messenger RNA, transition to productive elongation, and ultimately terminate transcription. Through these different stages of transcription, Pol II is dynamically phosphorylated at the C-terminal tail of its largest subunit, serving as a control mechanism for Pol II elongation and a signaling/binding platform for co-transcriptional factors. The large number of core protein factors participating in the fundamental steps of transcription add dense layers of regulation that contribute to the complexity of temporal and spatial control of gene expression within any given cell type. The Pol II transcription system is highly conserved across different levels of eukaryotes; however, most of the information here will focus on the human Pol II system. This review walks through various stages of transcription, from preinitiation complex assembly to termination, highlighting the functions and mechanisms of the core machinery that participates in each stage.
more »
« less
The structure and activities of the archaeal transcription termination factor Eta detail vulnerabilities of the transcription elongation complex
Transcription must be properly regulated to ensure dynamic gene expression underlying growth, development, and response to environmental cues. Regulation is imposed throughout the transcription cycle, and while many efforts have detailed the regulation of transcription initiation and early elongation, the termination phase of transcription also plays critical roles in regulating gene expression. Transcription termination can be driven by only a few proteins in each domain of life. Detailing the mechanism(s) employed provides insight into the vulnerabilities of transcription elongation complexes (TECs) that permit regulated termination to control expression of many genes and operons. Here, we describe the biochemical activities and crystal structure of the superfamily 2 helicase Eta, one of two known factors capable of disrupting archaeal transcription elongation complexes. Eta retains a twin-translocase core domain common to all superfamily 2 helicases and a well-conserved C terminus wherein individual amino acid substitutions can critically abrogate termination activities. Eta variants that perturb ATPase, helicase, single-stranded DNA and double-stranded DNA translocase and termination activities identify key regions of the C terminus of Eta that, when combined with modeling Eta–TEC interactions, provide a structural model of Eta-mediated termination guided in part by structures of Mfd and the bacterial TEC. The susceptibility of TECs to disruption by termination factors that target the upstream surface of RNA polymerase and potentially drive termination through forward translocation and allosteric mechanisms that favor opening of the clamp to release the encapsulated nucleic acids emerges as a common feature of transcription termination mechanisms.
more »
« less
- Award ID(s):
- 2022065
- PAR ID:
- 10599129
- Publisher / Repository:
- PNAS
- Date Published:
- Journal Name:
- Proceedings of the National Academy of Sciences
- Volume:
- 119
- Issue:
- 32
- ISSN:
- 0027-8424
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Bacteria use a multi-layered regulatory strategy to precisely and rapidly tune gene expression in response to environmental cues. Small RNAs (sRNAs) form an important layer of gene expression control and most act post-transcriptionally to control translation and stability of mRNAs. We have shown that at least five different sRNAs inEscherichia coliregulate the cyclopropane fatty acid synthase (cfa) mRNA. These sRNAs bind at different sites in the long 5’ untranslated region (UTR) ofcfamRNA and previous work suggested that they modulate RNase E-dependent mRNA turnover. Recently, thecfa5’ UTR was identified as a site of Rho-dependent transcription termination, leading us to hypothesize that the sRNAs might also regulatecfatranscription elongation. In this study we find that a pyrimidine-rich region flanked by sRNA binding sites in thecfa5’ UTR is required for premature Rho-dependent termination. We discovered that both the activating sRNA RydC and repressing sRNA CpxQ regulatecfaprimarily by modulating Rho-dependent termination ofcfatranscription, with only a minor effect on RNase E-mediated turnover ofcfamRNA. A stem-loop structure in thecfa5’ UTR sequesters the pyrimidine-rich region required for Rho-dependent termination. CpxQ binding to the 5’ portion of the stem increases Rho-dependent termination whereas RydC binding downstream of the stem decreases termination. These results reveal the versatile mechanisms sRNAs use to regulate target gene expression at transcriptional and post-transcriptional levels and demonstrate that regulation by sRNAs in long UTRs can involve modulation of transcription elongation. ImportanceBacteria respond to stress by rapidly regulating gene expression. Regulation can occur through control of messenger RNA (mRNA) production (transcription elongation), stability of mRNAs, or translation of mRNAs. Bacteria can use small RNAs (sRNAs) to regulate gene expression at each of these steps, but we often do not understand how this works at a molecular level. In this study, we find that sRNAs inEscherichia coliregulate gene expression at the level of transcription elongation by promoting or inhibiting transcription termination by a protein called Rho. These results help us understand new molecular mechanisms of gene expression regulation in bacteria.more » « less
-
RNA polymerase elongation along the gene body is tightly regulated to ensure proper transcription and alternative splicing events. Understanding the mechanism and factors critical in regulating the rate of RNA polymerase II elongation and processivity is clearly important. Recently we showed that PARP1, a well-known DNA repair protein, when bound to chromatin, regulates RNA polymerase II elongation. However, the mechanism by which it does so is not known. In the current study, we aimed to tease out how PARP1 regulates RNAPII elongation. We show, both in vivo and in vitro, that PARP1 binds directly to the Integrator subunit 3 (IntS3), a member of the elongation Integrator complex. The association between the two proteins is mediated via the C-terminal domain of PARP1 to the C-terminal domain of IntS3. Interestingly, the occupancy of IntS3 along two PARP1 target genes mimicked that of PARP1, suggesting a role in its recruitment/assembly of elongation factors. Indeed, the knockdown of PARP1 resulted in differential chromatin association and gene occupancy of IntS3 and other key elongation factors. Most of these PARP1-mediated effects were due to the physical presence of PARP1 rather than its PARylation activity. These studies argue that PARP1 controls the progressive RNAPII elongation complexes. In summary, we present a platform to begin to decipher PARP1′s role in recruiting/scaffolding elongation factors along the gene body regions during RNA polymerase II elongation and gene regulation.more » « less
-
Signal processing is critical to a myriad of biological phenomena (natural and engineered) that involve gene regulation. Biological signal processing can be achieved by way of allosteric transcription factors. In canonical regulatory systems (e.g., the lactose repressor), an INPUT signal results in the induction of a given transcription factor and objectively switches gene expression from an OFF state to an ON state. In such biological systems, to revert the gene expression back to the OFF state requires the aggressive dilution of the input signal, which can take 1 or more d to achieve in a typical biotic system. In this study, we present a class of engineered allosteric transcription factors capable of processing two-signal INPUTS, such that a sequence of INPUTS can rapidly transition gene expression between alternating OFF and ON states. Here, we present two fundamental biological signal processing filters, BANDPASS and BANDSTOP, that are regulated by D-fucose and isopropyl-β-D-1-thiogalactopyranoside. BANDPASS signal processing filters facilitate OFF–ON–OFF gene regulation. Whereas, BANDSTOP filters facilitate the antithetical gene regulation, ON–OFF–ON. Engineered signal processing filters can be directed to seven orthogonal promoters via adaptive modular DNA binding design. This collection of signal processing filters can be used in collaboration with our established transcriptional programming structure. Kinetic studies show that our collection of signal processing filters can switch between states of gene expression within a few minutes with minimal metabolic burden—representing a paradigm shift in general gene regulation.more » « less
-
Abstract Transcription factor IIH (TFIIH) is a protein assembly essential for transcription initiation and nucleotide excision repair (NER). Yet, understanding of the conformational switching underpinning these diverse TFIIH functions remains fragmentary. TFIIH mechanisms critically depend on two translocase subunits, XPB and XPD. To unravel their functions and regulation, we build cryo-EM based TFIIH models in transcription- and NER-competent states. Using simulations and graph-theoretical analysis methods, we reveal TFIIH’s global motions, define TFIIH partitioning into dynamic communities and show how TFIIH reshapes itself and self-regulates depending on functional context. Our study uncovers an internal regulatory mechanism that switches XPB and XPD activities making them mutually exclusive between NER and transcription initiation. By sequentially coordinating the XPB and XPD DNA-unwinding activities, the switch ensures precise DNA incision in NER. Mapping TFIIH disease mutations onto network models reveals clustering into distinct mechanistic classes, affecting translocase functions, protein interactions and interface dynamics.more » « less
An official website of the United States government

