We develop a projected Nesterov’s proximal-gradient (PNPG) scheme for reconstructing sparse signals from compressive Poisson-distributed measurements with the mean signal intensity that follows an affine model with known intercept. The objective function to be minimized is a sum of convex data fidelity (negative log-likelihood (NLL)) and regularization terms. We apply sparse signal regularization where the signal belongs to a nonempty closed convex set within the domain of the NLL and signal sparsity is imposed using total-variation (TV) penalty. We present analytical upper bounds on the regularization tuning constant. The proposed PNPG method employs projected Nesterov’s acceleration step, function restart, and an adaptive step-size selection scheme that aims at obtaining a good local majorizing function of the NLL and reducing the time spent backtracking. We establish O(k⁻²) convergence of the PNPG method with step-size backtracking only and no restart. Numerical examples demonstrate the performance of the PNPG method.
more »
« less
This content will become publicly available on January 1, 2026
Adaptive and Self-Tuning SBL With Total Variation Priors for Block-Sparse Signal Recovery
This letter addresses the problem of estimating block sparse signal with unknown group partitions in a multiple measurement vector (MMV) setup. We propose a Bayesian framework by applying an adaptive total variation (TV) penalty on the hyper-parameter space of the sparse signal. The main contributions are two-fold. 1) We extend the TV penalty beyond the immediate neighbor, thus enabling better capture of the signal structure. 2) A dynamic framework is provided to learn the regularization weights for the TV penalty based on the statistical dependencies between the entries of tentative blocks, thus eliminating the need for fine-tuning. The superior performance of the proposed method is empirically demonstrated by extensive computer simulations with the state-of-art benchmarks. The proposed solution exhibits both excellent performance and robustness against sparsity model mismatch.
more »
« less
- Award ID(s):
- 2225617
- PAR ID:
- 10599159
- Publisher / Repository:
- IEEE
- Date Published:
- Journal Name:
- IEEE Signal Processing Letters
- Volume:
- 32
- ISSN:
- 1070-9908
- Page Range / eLocation ID:
- 1555 to 1559
- Subject(s) / Keyword(s):
- Compressive sensing block-sparsity total variation SBL ADMM
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We develop a framework for reconstructing images that are sparse in an appropriate transform domain from polychromatic computed tomography (CT) measurements under the blind scenario where the material of the inspected object and incident-energy spectrum are unknown. Assuming that the object that we wish to reconstruct consists of a single material, we obtain a parsimonious measurement-model parameterization by changing the integral variable from photon energy to mass attenuation, which allows us to combine the variations brought by the unknown incident spectrum and mass attenuation into a single unknown mass-attenuation spectrum function; the resulting measurement equation has the Laplace-integral form. The mass-attenuation spectrum is then expanded into basis functions using B splines of order one. We consider a Poisson noise model and establish conditions for biconvexity of the corresponding negative log-likelihood (NLL) function with respect to the density-map and mass-attenuation spectrum parameters. We derive a block-coordinate descent algorithm for constrained minimization of a penalized NLL objective function, where penalty terms ensure nonnegativity of the mass-attenuation spline coefficients and nonnegativity and gradient-map sparsity of the density-map image, imposed using a convex total-variation (TV) norm; the resulting objective function is biconvex. This algorithm alternates between a Nesterov’s proximal-gradient (NPG) step and a limited-memory Broyden-Fletcher-Goldfarb-Shanno with box constraints (L-BFGS-B) iteration for updating the image and mass-attenuation spectrum parameters, respectively. We prove the Kurdyka-Łojasiewicz property of the objective function, which is important for establishing local convergence of block-coordinate descent schemes in biconvex optimization problems. Our framework applies to other NLLs and signal-sparsity penalties, such as lognormal NLL and ℓ₁ norm of 2D discrete wavelet transform (DWT) image coefficients. Numerical experiments with simulated and real X-ray CT data demonstrate the performance of the proposed scheme.more » « less
-
We develop a sparse image reconstruction method for Poisson-distributed polychromatic X-ray computed tomography (CT) measurements under the blind scenario where the material of the inspected object and the incident energy spectrum are unknown. We employ our mass-attenuation spectrum parameterization of the noiseless measurements for single-material objects and express the mass-attenuation spectrum as a linear combination of B-spline basis functions of order one. A block coordinate-descent algorithm is developed for constrained minimization of a penalized Poisson negative log-likelihood (NLL) cost function, where constraints and penalty terms ensure nonnegativity of the spline coefficients and nonnegativity and sparsity of the density-map image; the image sparsity is imposed using a convex total-variation (TV) norm penalty term. This algorithm alternates between a Nesterov’s proximal-gradient (NPG) step for estimating the density-map image and a limited-memory Broyden-Fletcher-Goldfarb-Shanno with box constraints (L-BFGS-B) step for estimating the incident-spectrum parameters. We establish conditions for biconvexity of the penalized NLL objective function, which, if satisfied, ensures monotonicity of the NPG-BFGS iteration. We also show that the penalized NLL objective satisfies the Kurdyka-Łojasiewicz property, which is important for establishing local convergence of block-coordinate descent schemes in biconvex optimization problems. Simulation examples demonstrate the performance of the proposed scheme.more » « less
-
Abstract We introduce a lifted $$\ell _1$$ (LL1) regularization framework for the recovery of sparse signals. The proposed LL1 regularization is a generalization of several popular regularization methods in the field and is motivated by recent advancements in re-weighted $$\ell _1$$ approaches for sparse recovery. Through a comprehensive analysis of the relationships between existing methods, we identify two distinct types of lifting functions that guarantee equivalence to the $$\ell _0$$ minimization problem, which is a key objective in sparse signal recovery. To solve the LL1 regularization problem, we propose an algorithm based on the alternating direction method of multipliers and provide proof of convergence for the unconstrained formulation. Our experiments demonstrate the improved performance of the LL1 regularization compared with state-of-the-art methods, confirming the effectiveness of our proposed framework. In conclusion, the LL1 regularization presents a promising and flexible approach to sparse signal recovery and invites further research in this area.more » « less
-
We show that a new design criterion, i.e., the least squares on subband errors regularized by a weighted norm, can be used to generalize the proportionate-type normalized subband adaptive filtering (PtNSAF) framework. The new criterion directly penalizes subband errors and includes a sparsity penalty term which is minimized using the damped regularized Newton’s method. The impact of the proposed generalized PtNSAF (GPtNSAF) is studied for the system identification problem via computer simulations. Specifically, we study the effects of using different numbers of subbands and various sparsity penalty terms for quasi-sparse, sparse, and dispersive systems. The results show that the benefit of increasing the number of subbands is larger than promoting sparsity of the estimated filter coefficients when the target system is quasi-sparse or dispersive. On the other hand, for sparse target systems, promoting sparsity becomes more important. More importantly, the two aspects provide complementary and additive benefits to the GPtNSAF for speeding up convergence.more » « less
An official website of the United States government
