skip to main content


This content will become publicly available on January 1, 2025

Title: A lifted ℓ 1 framework for sparse recovery
Abstract

We introduce a lifted $\ell _1$ (LL1) regularization framework for the recovery of sparse signals. The proposed LL1 regularization is a generalization of several popular regularization methods in the field and is motivated by recent advancements in re-weighted $\ell _1$ approaches for sparse recovery. Through a comprehensive analysis of the relationships between existing methods, we identify two distinct types of lifting functions that guarantee equivalence to the $\ell _0$ minimization problem, which is a key objective in sparse signal recovery. To solve the LL1 regularization problem, we propose an algorithm based on the alternating direction method of multipliers and provide proof of convergence for the unconstrained formulation. Our experiments demonstrate the improved performance of the LL1 regularization compared with state-of-the-art methods, confirming the effectiveness of our proposed framework. In conclusion, the LL1 regularization presents a promising and flexible approach to sparse signal recovery and invites further research in this area.

 
more » « less
Award ID(s):
1846690
NSF-PAR ID:
10504601
Author(s) / Creator(s):
; ;
Publisher / Repository:
oxford academic
Date Published:
Journal Name:
Information and Inference: A Journal of the IMA
Volume:
13
Issue:
1
ISSN:
2049-8772
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    This paper studies several solution paths of sparse quadratic minimization problems as a function of the weighing parameter of the bi-objective of estimation loss versus solution sparsity. Three such paths are considered: the “$$\ell _0$$0-path” where the discontinuous$$\ell _0$$0-function provides the exact sparsity count; the “$$\ell _1$$1-path” where the$$\ell _1$$1-function provides a convex surrogate of sparsity count; and the “capped$$\ell _1$$1-path” where the nonconvex nondifferentiable capped$$\ell _1$$1-function aims to enhance the$$\ell _1$$1-approximation. Serving different purposes, each of these three formulations is different from each other, both analytically and computationally. Our results deepen the understanding of (old and new) properties of the associated paths, highlight the pros, cons, and tradeoffs of these sparse optimization models, and provide numerical evidence to support the practical superiority of the capped$$\ell _1$$1-path. Our study of the capped$$\ell _1$$1-path is interesting in its own right as the path pertains to computable directionally stationary (= strongly locally minimizing in this context, as opposed to globally optimal) solutions of a parametric nonconvex nondifferentiable optimization problem. Motivated by classical parametric quadratic programming theory and reinforced by modern statistical learning studies, both casting an exponential perspective in fully describing such solution paths, we also aim to address the question of whether some of them can be fully traced in strongly polynomial time in the problem dimensions. A major conclusion of this paper is that a path of directional stationary solutions of the capped$$\ell _1$$1-regularized problem offers interesting theoretical properties and practical compromise between the$$\ell _0$$0-path and the$$\ell _1$$1-path. Indeed, while the$$\ell _0$$0-path is computationally prohibitive and greatly handicapped by the repeated solution of mixed-integer nonlinear programs, the quality of$$\ell _1$$1-path, in terms of the two criteria—loss and sparsity—in the estimation objective, is inferior to the capped$$\ell _1$$1-path; the latter can be obtained efficiently by a combination of a parametric pivoting-like scheme supplemented by an algorithm that takes advantage of the Z-matrix structure of the loss function.

     
    more » « less
  2. Summary

    We provide adaptive inference methods, based on $\ell _1$ regularization, for regular (semiparametric) and nonregular (nonparametric) linear functionals of the conditional expectation function. Examples of regular functionals include average treatment effects, policy effects, and derivatives. Examples of nonregular functionals include average treatment effects, policy effects, and derivatives conditional on a covariate subvector fixed at a point. We construct a Neyman orthogonal equation for the target parameter that is approximately invariant to small perturbations of the nuisance parameters. To achieve this property, we include the Riesz representer for the functional as an additional nuisance parameter. Our analysis yields weak ‘double sparsity robustness’: either the approximation to the regression or the approximation to the representer can be ‘completely dense’ as long as the other is sufficiently ‘sparse’. Our main results are nonasymptotic and imply asymptotic uniform validity over large classes of models, translating into honest confidence bands for both global and local parameters.

     
    more » « less
  3. Abstract

    The ratio of $\ell _{1}$ and $\ell _{2}$ norms, denoted as $\ell _{1}/\ell _{2}$, has presented prominent performance in promoting sparsity. By adding partial support information to the standard $\ell _{1}/\ell _{2}$ minimization, in this paper, we introduce a novel model, i.e. the weighted $\ell _{1}/\ell _{2}$ minimization, to recover sparse signals from the linear measurements. The restricted isometry property based conditions for sparse signal recovery in both noiseless and noisy cases through the weighted $\ell _{1}/\ell _{2}$ minimization are established. And we show that the proposed conditions are weaker than the analogous conditions for standard $\ell _{1}/\ell _{2}$ minimization when the accuracy of the partial support information is at least $50\%$. Moreover, we develop effective algorithms and illustrate our results via extensive numerical experiments on synthetic data in both noiseless and noisy cases.

     
    more » « less
  4. Abstract

    There are many ways of measuring and modeling tail-dependence in random vectors: from the general framework of multivariate regular variation and the flexible class of max-stable vectors down to simple and concise summary measures like the matrix of bivariate tail-dependence coefficients. This paper starts by providing a review of existing results from a unifying perspective, which highlights connections between extreme value theory and the theory of cuts and metrics. Our approach leads to some new findings in both areas with some applications to current topics in risk management.

    We begin by using the framework of multivariate regular variation to show that extremal coefficients, or equivalently, the higher-order tail-dependence coefficients of a random vector can simply be understood in terms of random exceedance sets, which allows us to extend the notion of Bernoulli compatibility. In the special but important case of bivariate tail-dependence, we establish a correspondence between tail-dependence matrices and$$L^1$$L1- and$$\ell _1$$1-embeddable finite metric spaces via the spectral distance, which is a metric on the space of jointly 1-Fréchet random variables. Namely, the coefficients of the cut-decomposition of the spectral distance and of the Tawn-Molchanov max-stable model realizing the corresponding bivariate extremal dependence coincide. We show that line metrics are rigid and if the spectral distance corresponds to a line metric, the higher order tail-dependence is determined by the bivariate tail-dependence matrix.

    Finally, the correspondence between$$\ell _1$$1-embeddable metric spaces and tail-dependence matrices allows us to revisit the realizability problem, i.e. checking whether a given matrix is a valid tail-dependence matrix. We confirm a conjecture of Shyamalkumar and Tao (2020) that this problem is NP-complete.

     
    more » « less
  5. Abstract

    Sparsity finds applications in diverse areas such as statistics, machine learning, and signal processing. Computations over sparse structures are less complex compared to their dense counterparts and need less storage. This paper proposes a heuristic method for retrieving sparse approximate solutions of optimization problems via minimizing the$$\ell _{p}$$pquasi-norm, where$$00<p<1. An iterative two-block algorithm for minimizing the$$\ell _{p}$$pquasi-norm subject to convex constraints is proposed. The proposed algorithm requires solving for the roots of a scalar degree polynomial as opposed to applying a soft thresholding operator in the case of$$\ell _{1}$$1norm minimization. The algorithm’s merit relies on its ability to solve the$$\ell _{p}$$pquasi-norm minimization subject to any convex constraints set. For the specific case of constraints defined by differentiable functions with Lipschitz continuous gradient, a second, faster algorithm is proposed. Using a proximal gradient step, we mitigate the convex projection step and hence enhance the algorithm’s speed while proving its convergence. We present various applications where the proposed algorithm excels, namely, sparse signal reconstruction, system identification, and matrix completion. The results demonstrate the significant gains obtained by the proposed algorithm compared to other$$\ell _{p}$$pquasi-norm based methods presented in previous literature.

     
    more » « less