A<sc>bstract</sc> Measurements of the production cross sections of prompt D0, D+, D*+,$$ {\textrm{D}}_{\textrm{s}}^{+} $$ ,$$ {\Lambda}_{\textrm{c}}^{+} $$ , and$$ {\Xi}_{\textrm{c}}^{+} $$ charm hadrons at midrapidity in proton-proton collisions at$$ \sqrt{s} $$ = 13 TeV with the ALICE detector are presented. The D-meson cross sections as a function of transverse momentum (pT) are provided with improved precision and granularity. The ratios ofpT-differential meson production cross sections based on this publication and on measurements at different rapidity and collision energy provide a constraint on gluon parton distribution functions at low values of Bjorken-x(10−5–10−4). The measurements of$$ {\Lambda}_{\textrm{c}}^{+} $$ ($$ {\Xi}_{\textrm{c}}^{+} $$ ) baryon production extend the measuredpTintervals down topT= 0(3) GeV/c. These measurements are used to determine the charm-quark fragmentation fractions and the$$ \textrm{c}\overline{\textrm{c}} $$ production cross section at midrapidity (|y|<0.5) based on the sum of the cross sections of the weakly-decaying ground-state charm hadrons D0, D+,$$ {\textrm{D}}_{\textrm{s}}^{+} $$ ,$$ {\Lambda}_{\textrm{c}}^{+} $$ ,$$ {\Xi}_{\textrm{c}}^0 $$ and, for the first time,$$ {\Xi}_{\textrm{c}}^{+} $$ , and of the strongly-decaying J/ψmesons. The first measurements of$$ {\Xi}_{\textrm{c}}^{+} $$ and$$ {\Sigma}_{\textrm{c}}^{0,++} $$ fragmentation fractions at midrapidity are also reported. A significantly larger fraction of charm quarks hadronising to baryons is found compared to e+e−and ep collisions. The$$ \textrm{c}\overline{\textrm{c}} $$ production cross section at midrapidity is found to be at the upper bound of state-of-the-art perturbative QCD calculations.
more »
« less
This content will become publicly available on March 1, 2026
First observation of strange baryon enhancement with effective energy in pp collisions at the LHC
A<sc>bstract</sc> The production of (multi-)strange hadrons is measured at midrapidity in proton-proton collisions at$$ \sqrt{s} $$ = 13 TeV as a function of the local charged-particle multiplicity in the pseudorapidity interval |η|<0.5 and of the very-forward energy measured by the ALICE Zero-Degree Calorimeters. The latter provides information on the effective energy, i.e. the energy available for particle production in the collision once subtracted from the centre-of-mass energy. The yields of$$ {\textrm{K}}_{\textrm{S}}^0 $$ ,$$ \Lambda +\overline{\Lambda} $$ , and$$ {\Xi}^{-}+{\overline{\Xi}}^{+} $$ per charged-particle increase with the effective energy. In addition, this work exploits a multi-differential approach to decouple the roles of local multiplicity and effective energy in such an enhancement. The results presented in this article provide new insights into the interplay between global properties of the collision, such as the initial available energy in the event, and the locally produced final hadronic state, connected to the charged-particle multiplicity at midrapidity. Notably, a strong increase of strange baryon production with effective energy is observed for fixed charged-particle multiplicity at midrapidity. These results are discussed within the context of existing phenomenological models of hadronisation implemented in different tunes of the PYTHIA 8 event generator.
more »
« less
- Award ID(s):
- 2208883
- PAR ID:
- 10599241
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- Springer
- Date Published:
- Journal Name:
- Journal of High Energy Physics
- Volume:
- 2025
- Issue:
- 3
- ISSN:
- 1029-8479
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The transverse momentum ($$p_{\textrm{T}}$$ ) differential production cross section of the promptly produced charm-strange baryon$$\mathrm {\Xi _{c}^{0}}$$ (and its charge conjugate$$\overline{\mathrm {\Xi _{c}^{0}}}$$ ) is measured at midrapidity via its hadronic decay into$$\mathrm{\pi ^{+}}\Xi ^{-}$$ in p–Pb collisions at a centre-of-mass energy per nucleon–nucleon collision$$\sqrt{s_{\textrm{NN}}}~=~5.02$$ TeV with the ALICE detector at the LHC. The$$\mathrm {\Xi _{c}^{0}}$$ nuclear modification factor ($$R_{\textrm{pPb}}$$ ), calculated from the cross sections in pp and p–Pb collisions, is presented and compared with the$$R_{\textrm{pPb}}$$ of$$\mathrm {\Lambda _{c}^{+}}$$ baryons. The ratios between the$$p_{\textrm{T}}$$ -differential production cross section of$$\mathrm {\Xi _{c}^{0}}$$ baryons and those of$$\mathrm {D^0}$$ mesons and$$\mathrm {\Lambda _{c}^{+}}$$ baryons are also reported and compared with results at forward and backward rapidity from the LHCb Collaboration. The measurements of the production cross section of prompt$$\Xi ^0_\textrm{c}$$ baryons are compared with a model based on perturbative QCD calculations of charm-quark production cross sections, which includes only cold nuclear matter effects in p–Pb collisions, and underestimates the measurement by a factor of about 50. This discrepancy is reduced when the data is compared with a model that includes string formation beyond leading-colour approximation or in which hadronisation is implemented via quark coalescence. The$$p_{\textrm{T}}$$ -integrated cross section of prompt$$\Xi ^0_\textrm{c}$$ -baryon production at midrapidity extrapolated down to$$p_{\textrm{T}}$$ = 0 is also reported. These measurements offer insights and constraints for theoretical calculations of the hadronisation process. Additionally, they provide inputs for the calculation of the charm production cross section in p–Pb collisions at midrapidity.more » « less
-
Abstract The first measurement of the multiplicity dependence of intra-jet properties of leading charged-particle jets in proton–proton (pp) collisions is reported. The mean charged-particle multiplicity and jet fragmentation distributions are measured in minimum-bias and high-multiplicity pp collisions at center-of-mass energy$$\sqrt{s}$$ = 13 TeV using the ALICE detector. Jets are reconstructed from charged particles produced in the midrapidity region ($$|\eta | < 0.9$$ ) using the sequential recombination anti-$$k_{\textrm{T}}$$ algorithm with jet resolution parametersR= 0.2, 0.3, and 0.4 for the transverse momentum ($$p_\textrm{T}$$ ) interval 5–110 GeV/c. The high-multiplicity events are selected by the forward V0 scintillator detectors. The mean charged-particle multiplicity inside the leading jet cone rises monotonically with increasing jet$$p_\textrm{T}$$ in qualitative agreement with previous measurements at lower energies. The distributions of jet fragmentation function variables$$z^{\textrm{ch}}$$ and$$\xi ^{\textrm{ch}}$$ are measured for different jet-$$p_\textrm{T}$$ intervals. Jet-$$p_\textrm{T}$$ independent fragmentation of leading jets is observed for wider jets except at high- and low-$$z^{\textrm{ch}}$$ values. The observed “hump-backed plateau” structure in the$$\xi ^{\textrm{ch}}$$ distribution indicates suppression of low-$$p_\textrm{T}$$ particles. In high-multiplicity events, an enhancement of the fragmentation probability of low-$$z^{\textrm{ch}}$$ particles accompanied by a suppression of high-$$z^{\textrm{ch}}$$ particles is observed compared to minimum-bias events. This behavior becomes more prominent for low-$$p_\textrm{T}$$ jets with larger jet radius. The results are compared with predictions of QCD-inspired event generators, PYTHIA 8 with Monash 2013 tune and EPOS LHC. It is found that PYTHIA 8 qualitatively reproduces the jet modification in high-multiplicity events except at high jet$$p_\textrm{T}$$ . These measurements provide important constraints to models of jet fragmentation.more » « less
-
A<sc>bstract</sc> The collective behavior of$$ {\textrm{K}}_{\textrm{S}}^0 $$ and$$ \Lambda /\overline{\Lambda} $$ strange hadrons is studied by measuring the elliptic azimuthal anisotropy (v2) using the scalar-product and multiparticle correlation methods. Proton-lead (pPb) collisions at a nucleon-nucleon center-of-mass energy$$ \sqrt{s_{\textrm{NN}}} $$ = 8.16 TeV and lead-lead (PbPb) collisions at$$ \sqrt{s_{\textrm{NN}}} $$ = 5.02 TeV collected by the CMS experiment at the LHC are investigated. Nonflow effects in the pPb collisions are studied by using a subevent cumulant analysis and by excluding events where a jet with transverse momentum greater than 20 GeV is present. The strange hadronv2values extracted in pPb collisions via the four- and six-particle correlation method are found to be nearly identical, suggesting the collective behavior. Comparisons of the pPb and PbPb results for both strange hadrons and charged particles illustrate how event-by-event flow fluctuations depend on the system size.more » « less
-
A<sc>bstract</sc> A study of strange hadron production associated with hard scattering processes and with the underlying event is conducted to investigate the origin of the enhanced production of strange hadrons in small collision systems characterised by large charged-particle multiplicities. For this purpose, the production of the single-strange meson$$ {\textrm{K}}_{\textrm{S}}^0 $$ and the double-strange baryon Ξ±is measured, in each event, in the azimuthal direction of the highest-pTparticle (“trigger” particle), related to hard scattering processes, and in the direction transverse to it in azimuth, associated with the underlying event, in pp collisions at$$ \sqrt{s} $$ = 5.02 TeV and$$ \sqrt{s} $$ = 13 TeV using the ALICE detector at the LHC. The per-trigger yields of$$ {\textrm{K}}_{\textrm{S}}^0 $$ and Ξ±are dominated by the transverse-to-leading production (i.e., in the direction transverse to the trigger particle), whose contribution relative to the toward-leading production is observed to increase with the event charged-particle multiplicity. The transverse-to-leading and the toward-leading Ξ±/$$ {\textrm{K}}_{\textrm{S}}^0 $$ yield ratios increase with the multiplicity of charged particles, suggesting that strangeness enhancement with multiplicity is associated with both hard scattering processes and the underlying event. The relative production of Ξ±with respect to$$ {\textrm{K}}_{\textrm{S}}^0 $$ is higher in transverse-to-leading processes over the whole multiplicity interval covered by the measurement. The$$ {\textrm{K}}_{\textrm{S}}^0 $$ and Ξ±per-trigger yields and yield ratios are compared with predictions of three different phenomenological models, namely Pythia8.2 with the Monash tune, Pythia8.2 with ropes and EPOS LHC. The comparison shows that none of them can quantitatively describe either the transverse-to-leading or the toward-leading yields of$$ {\textrm{K}}_{\textrm{S}}^0 $$ and Ξ±.more » « less