The production yields of the Σ(1385)
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
A bstract ± and Ξ(1530)0resonances are measured in pp collisions at = 13 TeV with ALICE. The measurements are performed as a function of the charged-particle multiplicity ⟨d$$ \sqrt{s} $$ N ch/ dη ⟩, which is related to the energy density produced in the collision. The results include transverse momentum (p T) distributions,p T-integrated yields, mean transverse momenta of Σ(1385)± and Ξ(1530)0, as well as ratios of thep T-integrated resonance yields relative to yields of other hadron species. The Σ(1385)± /π ± and Ξ(1530)0/π ± yield ratios are consistent with the trend of the enhancement of strangeness production from low to high multiplicity pp collisions, which was previously observed for strange and multi-strange baryons. The yield ratio between the measured resonances and the long-lived baryons with the same strangeness content exhibits a hint of a mild increasing trend at low multiplicity, despite too large uncertainties to exclude the flat behaviour. The results are compared with predictions from models such as EPOS-LHC and PYTHIA 8 with Rope shoving. The latter provides the best description of the multiplicity dependence of the Σ(1385)± and Ξ(1530)0production in pp collisions at = 13 TeV.$$ \sqrt{s} $$ Free, publicly-accessible full text available May 1, 2025 -
A bstract The ALICE Collaboration reports a search for jet quenching effects in high-multiplicity (HM) proton-proton collisions at
= 13 TeV, using the semi-inclusive azimuthal-difference distribution ∆$$ \sqrt{s} $$ φ of charged-particle jets recoiling from a high transverse momentum (high-p T, trig) trigger hadron. Jet quenching may broaden the ∆φ distribution measured in HM events compared to that in minimum bias (MB) events. The measurement employs ap T, trig-differential observable for data-driven suppression of the contribution of multiple partonic interactions, which is the dominant background. While azimuthal broadening is indeed observed in HM compared to MB events, similar broadening for HM events is observed for simulations based on the PYTHIA 8 Monte Carlo generator, which does not incorporate jet quenching. Detailed analysis of these data and simulations show that the azimuthal broadening is due to bias of the HM selection towards events with multiple jets in the final state. The identification of this bias has implications for all jet quenching searches where selection is made on the event activity.Free, publicly-accessible full text available May 1, 2025 -
Abstract A Large Ion Collider Experiment (ALICE) has been conceived and constructed as a heavy-ion experiment at the LHC. During LHC Runs 1 and 2, it has produced a wide range of physics results using all collision systems available at the LHC. In order to best exploit new physics opportunities opening up with the upgraded LHC and new detector technologies, the experiment has undergone a major upgrade during the LHC Long Shutdown 2 (2019–2022). This comprises the move to continuous readout, the complete overhaul of core detectors, as well as a new online event processing farm with a redesigned online-offline software framework. These improvements will allow to record Pb-Pb collisions at rates up to 50 kHz, while ensuring sensitivity for signals without a triggerable signature.
Free, publicly-accessible full text available May 1, 2025 -
A bstract Results on the transverse spherocity dependence of light-flavor particle production (
π , K, p,ϕ , K*0, , Λ, Ξ) at midrapidity in high-multiplicity pp collisions at$$ {\textrm{K}}_{\textrm{S}}^0 $$ = 13 TeV were obtained with the ALICE apparatus. The transverse spherocity estimator$$ \sqrt{s} $$ categorizes events by their azimuthal topology. Utilizing narrow selections on$$ \left({S}_{\textrm{O}}^{p_{\textrm{T}}=1}\right) $$ , it is possible to contrast particle production in collisions dominated by many soft initial interactions with that observed in collisions dominated by one or more hard scatterings. Results are reported for two multiplicity estimators covering different pseudorapidity regions. The$$ {S}_{\textrm{O}}^{p_{\textrm{T}}=1} $$ estimator is found to effectively constrain the hardness of the events when the midrapidity (|$$ {S}_{\textrm{O}}^{p_{\textrm{T}}=1} $$ η | < 0.8) estimator is used.The production rates of strange particles are found to be slightly higher for soft isotropic topologies, and severely suppressed in hard jet-like topologies. These effects are more pronounced for hadrons with larger mass and strangeness content, and observed when the topological selection is done within a narrow multiplicity interval. This demonstrates that an important aspect of the universal scaling of strangeness enhancement with final-state multiplicity is that high-multiplicity collisions are dominated by soft, isotropic processes. On the contrary, strangeness production in events with jet-like processes is significantly reduced.
The results presented in this article are compared with several QCD-inspired Monte Carlo event generators. Models that incorporate a two-component phenomenology, either through mechanisms accounting for string density, or thermal production, are able to describe the observed strangeness enhancement as a function of
.$$ {S}_{\textrm{O}}^{p_{\textrm{T}}=1} $$ Free, publicly-accessible full text available May 1, 2025 -
A bstract Measurements of inclusive charged-particle jet production in pp and p-Pb collisions at center-of-mass energy per nucleon-nucleon collision
= 5$$ \sqrt{s_{\textrm{NN}}} $$ . 02 TeV and the corresponding nuclear modification factor are presented, using data collected with the ALICE detector at the LHC. Jets are reconstructed in the central rapidity region |$$ {R}_{\textrm{pPb}}^{\textrm{ch}\ \textrm{jet}} $$ η jet|< 0. 5 from charged particles using the anti-k Talgorithm with resolution parametersR = 0. 2, 0. 3, and 0. 4. Thep T-differential inclusive production cross section of charged-particle jets, as well as the corresponding cross section ratios, are reported for pp and p-Pb collisions in the transverse momentum range 10< $$ {p}_{\textrm{T},\textrm{jet}}^{\textrm{ch}} $$ < 140 GeV/c and 10< $$ {p}_{\textrm{T},\textrm{jet}}^{\textrm{ch}} $$ < 160 GeV/c , respectively, together with the nuclear modification factor in the range 10$$ {R}_{\textrm{pPb}}^{\textrm{ch}\ \textrm{jet}} $$ < $$ {p}_{\textrm{T},\textrm{jet}}^{\textrm{ch}} $$ < 140 GeV/c . The analysis extends thep Trange of the previously-reported charged-particle jet measurements by the ALICE Collaboration. The nuclear modification factor is found to be consistent with one and independent of the jet resolution parameter with the improved precision of this study, indicating that the possible influence of cold nuclear matter effects on the production cross section of charged-particle jets in p-Pb collisions at = 5$$ \sqrt{s_{\textrm{NN}}} $$ . 02 TeV is smaller than the current precision. The obtained results are in agreement with other minimum bias jet measurements available for RHIC and LHC energies, and are well reproduced by the NLO perturbative QCD Powheg calculations with parton shower provided by Pythia 8 as well as by Jetscape simulations.Free, publicly-accessible full text available May 1, 2025 -
Abstract Luminosity determination within the ALICE experiment is based on the measurement, in van der Meer scans, of the cross sections for visible processes involving one or more detectors (visible cross sections). In 2015 and 2018, the Large Hadron Collider provided Pb–Pb collisions at a centre-of-mass energy per nucleon pair of √
s NN= 5.02 TeV. Two visible cross sections, associated with particle detection in the Zero Degree Calorimeter (ZDC) and in the V0 detector, were measured in a van der Meer scan.This article describes the experimental set-up and the analysis procedure, and presents the measurement results. The analysis involves a comprehensive study of beam-related effects and an improved fitting procedure, compared to previous ALICE studies, for the extraction of the visible cross section. The resulting uncertainty of both the ZDC-based and the V0-based luminosity measurement for the full sample is 2.5%. The inelastic cross section for hadronic interactions in Pb–Pb collisions at √s NN= 5.02 TeV, obtained by efficiency correction of the V0-based visible cross section, was measured to be 7.67 ± 0.25 b, in agreement with predictions using the Glauber model.Free, publicly-accessible full text available February 1, 2025 -
A bstract Long- and short-range correlations for pairs of charged particles are studied via two-particle angular correlations in pp collisions at
= 13 TeV and p–Pb collisions at$$ \sqrt{s} $$ = 5$$ \sqrt{s_{\textrm{NN}}} $$ . 02 TeV. The correlation functions are measured as a function of relative azimuthal angle ∆φ and pseudorapidity separation ∆η for pairs of primary charged particles within the pseudorapidity interval |η |< 0. 9 and the transverse-momentum interval 1< p T< 4 GeV/c . Flow coefficients are extracted for the long-range correlations (1. 6< |∆η |< 1. 8) in various high-multiplicity event classes using the low-multiplicity template fit method. The method is used to subtract the enhanced yield of away-side jet fragments in high-multiplicity events. These results show decreasing flow signals toward lower multiplicity events. Furthermore, the flow coefficients for events with hard probes, such as jets or leading particles, do not exhibit any significant changes compared to those obtained from high-multiplicity events without any specific event selection criteria. The results are compared with hydrodynamic-model calculations, and it is found that a better understanding of the initial conditions is necessary to describe the results, particularly for low-multiplicity events.Free, publicly-accessible full text available March 1, 2025 -
A bstract The transverse momentum (
p T) and centrality dependence of the nuclear modification factorR AAof prompt and non-prompt J/ψ , the latter originating from the weak decays of beauty hadrons, have been measured by the ALICE collaboration in Pb–Pb collisions at = 5.02 TeV. The measurements are carried out through the e+e$$ \sqrt{s_{\textrm{NN}}} $$ − decay channel at midrapidity (|y | < 0.9) in the transverse momentum region 1.5 <p T< 10 GeV/c . Both prompt and non-prompt J/ψ measurements indicate a significant suppression forp T> 5 GeV/c , which becomes stronger with increasing collision centrality. The results are consistent with similar LHC measurements in the overlappingp Tintervals, and cover the kinematic region down top T= 1.5 GeV/c at midrapidity, not accessible by other LHC experiments. The suppression of prompt J/ψ in central and semicentral collisions exhibits a decreasing trend towards lower transverse momentum, described within uncertainties by models implementing J/ψ production from recombination of c and quarks produced independently in different partonic scatterings. At high transverse momentum, transport models including quarkonium dissociation are able to describe the suppression for prompt J/$$ \overline{\textrm{c}} $$ ψ . For non-prompt J/ψ , the suppression predicted by models including both collisional and radiative processes for the computation of the beauty-quark energy loss inside the quark-gluon plasma is consistent with measurements within uncertainties.Free, publicly-accessible full text available February 1, 2025 -
Abstract The knowledge of the material budget with a high precision is fundamental for measurements of direct photonproduction using the photon conversion method due to its direct impact on the total systematic uncertainty. Moreover, it influences many aspects of the charged-particle reconstruction performance. In this article, two procedures to determine data-driven corrections to the material-budget description in ALICE simulation software are developed.One is based on the precise knowledge of the gas composition in the Time Projection Chamber. The other is based on the robustness of the ratio between the produced number of photons and charged particles, to a large extent due to the approximate isospin symmetry in the number of produced neutral and charged pions. Both methods are applied to ALICE data allowing for a reduction of theoverall material budget systematic uncertainty from 4.5% down to2.5%. Using these methods, a locally correct material budget is alsoachieved. The two proposed methods are generic and can be applied toany experiment in a similar fashion.
-
The ALICE Collaboration reports the measurement of semi-inclusive distributions of charged-particle jets recoiling from a high transverse momentum (high) hadron trigger in proton-proton and central Pb-Pb collisions at. A data-driven statistical method is used to mitigate the large uncorrelated background in central Pb-Pb collisions. Recoil jet distributions are reported for jet resolution parameter, 0.4, and 0.5 in the rangeand trigger-recoil jet azimuthal separation. The measurements exhibit a marked medium-induced jet yield enhancement at lowand at large azimuthal deviation from. The enhancement is characterized by its dependence on, which has a slope that differs from zero by. Comparisons to model calculations incorporating different formulations of jet quenching are reported. These comparisons indicate that the observed yield enhancement arises from the response of the QGP medium to jet propagation.
© 2024 CERN, for the ALICE Collaboration 2024 CERN Free, publicly-accessible full text available July 1, 2025