skip to main content


Title: Integrable nonlocal derivative nonlinear Schrödinger equations
Abstract Integrable standard and nonlocal derivative nonlinear Schrödinger equations are investigated. The direct and inverse scattering are constructed for these equations; included are both the Riemann–Hilbert and Gel’fand–Levitan–Marchenko approaches and soliton solutions. As a typical application, it is shown how these derivative NLS equations can be obtained as asymptotic limits from a nonlinear Klein–Gordon equation.  more » « less
Award ID(s):
2005343
NSF-PAR ID:
10335887
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Inverse Problems
Volume:
38
Issue:
6
ISSN:
0266-5611
Page Range / eLocation ID:
065003
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A nonlocal nonlinear Schrödinger (NLS) equation was recently found by the authors and shown to be an integrable infinite dimensional Hamiltonian equation. Unlike the classical (local) case, here the nonlinearly induced “potential” issymmetric thus the nonlocal NLS equation is alsosymmetric. In this paper, newreverse space‐timeandreverse timenonlocal nonlinear integrable equations are introduced. They arise from remarkably simple symmetry reductions of general AKNS scattering problems where the nonlocality appears in both space and time or time alone. They are integrable infinite dimensional Hamiltonian dynamical systems. These include the reverse space‐time, and in some cases reverse time, nonlocal NLS, modified Korteweg‐deVries (mKdV), sine‐Gordon, (1 + 1) and (2 + 1) dimensional three‐wave interaction, derivative NLS, “loop soliton,” Davey–Stewartson (DS), partiallysymmetric DS and partially reverse space‐time DS equations. Linear Lax pairs, an infinite number of conservation laws, inverse scattering transforms are discussed and one soliton solutions are found. Integrable reverse space‐time and reverse time nonlocal discrete nonlinear Schrödinger type equations are also introduced along with few conserved quantities. Finally, nonlocal Painlevé type equations are derived from the reverse space‐time and reverse time nonlocal NLS equations.

     
    more » « less
  2. null (Ed.)
    In this paper, we propose a local discontinuous Galerkin (LDG) method for nonlinear and possibly degenerate parabolic stochastic partial differential equations, which is a high-order numerical scheme. It extends the discontinuous Galerkin (DG) method for purely hyperbolic equations to parabolic equations and shares with the DG method its advantage and flexibility. We prove the L 2 -stability of the numerical scheme for fully nonlinear equations. Optimal error estimates ( O ( h (k+1) )) for smooth solutions of semi-linear stochastic equations is shown if polynomials of degree k are used. We use an explicit derivative-free order 1.5 time discretization scheme to solve the matrix-valued stochastic ordinary differential equations derived from the spatial discretization. Numerical examples are given to display the performance of the LDG method. 
    more » « less
  3. Lump solutions are analytical rational function solutions localized in all directions in space. We analyze a class of lump solutions, generated from quadratic functions, to nonlinear partial differential equations. The basis of success is the Hirota bilinear formulation and the primary object is the class of positive multivariate quadratic functions. A complete determination of quadratic functions positive in space and time is given, and positive quadratic functions are characterized as sums of squares of linear functions. Necessary and sufficient conditions for positive quadratic functions to solve Hirota bilinear equations are presented, and such polynomial solutions yield lump solutions to nonlinear partial differential equations under the dependent variable logarithmic derivative transformations. Applications are made for a few generalized KP and BKP equations. 
    more » « less
  4. Abstract

    This work describes a detailed mathematical procedure in relation to a novel third‐order WENO scheme for the inviscid term of a system of nonlinear equations in the generalized grid system. The scheme developed minimizes the linear and nonlinear sources of dissipation error associated with the classical fifth‐order WENO scheme. The former is minimized by optimizing the resolving efficiency of the scheme whereas the latter is minimized by fixing the accuracy at the second‐order critical point via redefining the nonlinear weights. Moreover, the spectral property of second‐order viscous derivative, approximated by the single and double applications of the standard fourth‐order central finite difference scheme, is presented. The two‐dimensional Euler and Navier–Stokes equations in the generalized grids are mainly pursued. For the robustness in terms of capturing discontinuous and smooth structures, particularly two problems, which are difficult to handle in Cartesian grids, are chosen for discussion. The first one deals with a supersonic shock hitting the circular cylinder and generating all the possible flow inconsistencies. The other one deals with a subsonic flow over a circular cylinder at the incompressible limit. The numerical results are found to be in good agreement with the experimental data.

     
    more » « less
  5. Dielectric elastomers (DEs) deform and change shape when an electric field is applied across them. They are flexible, resilient, lightweight, and durable and as such are suitable for use as soft actuators. In this paper a physics-based and control-oriented model is developed for a DE tubular actuator using a physics-lumped parameter modeling approach. The model derives from the nonlinear partial differential equations (PDE) which govern the nonlinear elasticity of the DE actuator and the ordinary differential equation (ODE) that governs the electrical dynamics of the DE actuator. With the boundary conditions for the tubular actuator, the nonlinear PDEs are numerically solved and a quasi-static nonlinear model is obtained and validated by experiments. The full nonlinear model is then linearized around an operating point with an analytically derived Hessian matrix. The analytically linearized model is validated by experiments. Proportional–Integral–Derivative (PID) and H∞ control are developed and implemented to perform position reference tracking of the DEA and the controllers’ performances are evaluated according to control energy and tracking error. 
    more » « less