Anisotropic environmental signals or polarized membrane ion/solute carriers can generate spatially varying intracellular gradients, leading to polarized cell dynamics. For example, the directional migration of neutrophils, galvanotaxis of glioblastoma, and water flux in kidney cells all result from the polarized distribution of membrane ion carriers and other intracellular components. The underlying physical mechanisms behind how polarized ion carriers interact with environmental signals are not well studied. Here, we use a physiology-relevant, physics-based mathematical model to reveal how ion carriers generate intracellular ion and voltage gradients. The model can discern the contribution of individual ion carriers to the intracellular pH gradient, electric potential, and water flux. We discover that an extracellular pH gradient leads to an intracellular pH gradient via chloride-bicarbonate exchangers, whereas an extracellular electric field leads to an intracellular electric potential gradient via passive potassium channels. In addition, mechanical-biochemical coupling can modulate actin distribution and flow, creating a biphasic dependence of cell speed on water flux. Moreover, we find that F-actin interaction with NHE alone can generate cell movement, even when other ion carriers are not polarized. Taken together, the model highlights the importance of cell ion dynamics in modulating cell migration and cytoskeletal dynamics. Published by the American Physical Society2024
more »
« less
This content will become publicly available on June 4, 2026
Generation of fate patterns via intercellular forces
Studies of fate patterning during development typically emphasize cell-cell communication via diffusible chemical signals. Recent experiments on stem cell colonies, however, suggest that in some cases mechanical stresses, rather than secreted chemicals, enable long-ranged cell-cell interactions that specify positional information and pattern cell fates. These findings inspire a model of mechanical patterning: fate affects cell contractility, and pressure in the cell layer biases fate. Cells at the colony edge, more contractile than cells at the center, seed a pattern that propagates via force transmission. Strikingly, our model implies that the width of the outer fate domain varies nonmonotonically with substrate stiffness, a prediction that we confirm experimentally; we argue that a similar dependence on substrate stiffness can be achieved by a chemical morphogen only if strong constraints on the signaling pathway's mechanobiology are met. Our findings thus support the idea that mechanical stress can mediate patterning in the complete absence of chemical morphogens, even in nonmotile cell layers, thus expanding the repertoire of possible roles for mechanical signals in development and morphogenesis. Future tests of additional model predictions, like the effect of anisotropic substrate rigidity, will further broaden the range of achievable fate patterns. Published by the American Physical Society2025
more »
« less
- Award ID(s):
- 2243624
- PAR ID:
- 10599422
- Publisher / Repository:
- American Physical Society
- Date Published:
- Journal Name:
- Physical Review Research
- Volume:
- 7
- Issue:
- 2
- ISSN:
- 2643-1564
- Page Range / eLocation ID:
- L022051
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Nonreciprocal interactions fueled by local energy consumption can be found in biological and synthetic active matter at scales where viscoelastic forces are important. Such systems can be described by “odd” viscoelasticity, which assumes fewer material symmetries than traditional theories. Here we study odd viscoelasticity analytically and using lattice Boltzmann simulations. We identify a pattern-forming instability which produces an oscillating array of fluid vortices, and we elucidate which features govern the growth rate, wavelength, and saturation of the vortices. Our observation of pattern formation through odd mechanical response can inform models of biological patterning and guide engineering of odd dynamics in soft active matter systems. Published by the American Physical Society2024more » « less
-
Multiphase field models have emerged as an important computational tool for understanding biological tissue while resolving single-cell properties. While they have successfully reproduced many experimentally observed behaviors of living tissue, the theoretical underpinnings have not been fully explored. We show that a two-dimensional version of the model, which is commonly employed to study tissue monolayers, can be derived from a three-dimensional version in the presence of a substrate. We also show how viscous forces, which arise from friction between different cells, can be included in the model. Finally, we numerically simulate a tissue monolayer and find that intercellular friction tends to solidify the tissue. Published by the American Physical Society2024more » « less
-
In microbial communities, various cell types often coexist by occupying distinct spatial domains. What determines the shape of the interface between such domains—which, in turn, influences the interactions between cells and overall community function? Here, we address this question by developing a continuum model of a 2D spatially structured microbial community with two distinct cell types. We find that, depending on the balance of the different cell proliferation rates and substrate friction coefficients, the interface between domains is either stable and smooth or unstable and develops fingerlike protrusions. We establish quantitative principles describing when these different interfacial behaviors arise and find good agreement with both the results of previous experimental reports as well as new experiments performed here. Our work, thus, helps to provide a biophysical basis for understanding the interfacial morphodynamics of proliferating microbial communities as well as a broader range of proliferating active systems. Published by the American Physical Society2025more » « less
-
The metastasis of solid tumors hinges on cancer cells navigating through complex three-dimensional tissue environments, characterized by mechanical heterogeneity and biological diversity. This process is closely linked to the dynamic migration behavior exhibited by cancer cells, which dictates the invasiveness of tumors. In our study, we investigate tumor spheroids composed of breast cancer cells embedded in three-dimensional (3D) collagen matrices. Through a combination of quantitative experiments, artificial-intelligence-driven image processing, and mathematical modeling, we uncover rapid transitions in cell phenotypes and phenotype-dependent motility among disseminating cells originating from tumor spheroids. Persistent invasion leads to continuous remodeling of the extracellular matrix surrounding the spheroids, altering the landscape of migration phenotypes. Consequently, filopodial cells emerge as the predominant phenotype across diverse extracellular matrix conditions. Our findings unveil the complex mesoscale dynamics of invading tumor spheroids, shedding light on the complex interplay between migration phenotype plasticity, microenvironment remodeling, and cell motility within 3D extracellular matrices. Published by the American Physical Society2024more » « less
An official website of the United States government
