Operator learning has become a powerful tool in machine learning for modeling complex physical systems governed by partial differential equations (PDEs). Although Deep Operator Networks (DeepONet) show promise, they require extensive data acquisition. Physics-informed DeepONets (PI-DeepONet) mitigate data scarcity but suffer from inefficient training processes. We introduce Separable Operator Networks (SepONet), a novel framework that significantly enhances the efficiency of physics-informed operator learning. SepONet uses independent trunk networks to learn basis functions separately for different coordinate axes, enabling faster and more memory-efficient training via forward-mode automatic differentiation. We provide a universal approximation theorem for SepONet proving the existence of a separable approximation to any nonlinear continuous operator. Then, we comprehensively benchmark its representational capacity and computational performance against PI-DeepONet. Our results demonstrate SepONet's superior performance across various nonlinear and inseparable PDEs, with SepONet's advantages increasing with problem complexity, dimension, and scale. For 1D time-dependent PDEs, SepONet achieves up to 112× faster training and 82× reduction in GPU memory usage compared to PI-DeepONet, while maintaining comparable accuracy. For the 2D time-dependent nonlinear diffusion equation, SepONet efficiently handles the complexity, achieving a 6.44\% mean relative $$\ell_{2}$$ test error, while PI-DeepONet fails due to memory constraints. This work paves the way for extreme-scale learning of continuous mappings between infinite-dimensional function spaces.
more »
« less
This content will become publicly available on June 4, 2026
Quantum DeepONet: Neural operators accelerated by quantum computing
In the realm of computational science and engineering, constructing models that reflect real-world phenomena requires solving partial differential equations (PDEs) with different conditions. Recent advancements in neural operators, such as deep operator network (DeepONet), which learn mappings between infinite-dimensional function spaces, promise efficient computation of PDE solutions for a new condition in a single forward pass. However, classical DeepONet entails quadratic complexity concerning input dimensions during evaluation. Given the progress in quantum algorithms and hardware, here we propose to utilize quantum computing to accelerate DeepONet evaluations, yielding complexity that is linear in input dimensions. Our proposed quantum DeepONet integrates unary encoding and orthogonal quantum layers. We benchmark our quantum DeepONet using a variety of PDEs, including the antiderivative operator, advection equation, and Burgers' equation. We demonstrate the method's efficacy in both ideal and noisy conditions. Furthermore, we show that our quantum DeepONet can also be informed by physics, minimizing its reliance on extensive data collection. Quantum DeepONet will be particularly advantageous in applications in outer loop problems which require exploring parameter space and solving the corresponding PDEs, such as uncertainty quantification and optimal experimental design.
more »
« less
- Award ID(s):
- 2347833
- PAR ID:
- 10599504
- Publisher / Repository:
- arXiv
- Date Published:
- Journal Name:
- Quantum
- Volume:
- 9
- ISSN:
- 2521-327X
- Page Range / eLocation ID:
- 1761
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Operator learning has become a powerful tool in machine learning for modeling complex physical systems governed by partial differential equations (PDEs). Although Deep Operator Networks (DeepONet) show promise, they require extensive data acquisition. Physics-informed DeepONets (PI-DeepONet) mitigate data scarcity but suffer from inefficient training processes. We introduce Separable Operator Networks (SepONet), a novel framework that significantly enhances the efficiency of physics-informed operator learning. SepONet uses independent trunk networks to learn basis functions separately for different coordinate axes, enabling faster and more memory-efficient training via forward-mode automatic differentiation. We provide a universal approximation theorem for SepONet proving the existence of a separable approximation to any nonlinear continuous operator. Then, we comprehensively benchmark its representational capacity and computational performance against PI-DeepONet. Our results demonstrate SepONet's superior performance across various nonlinear and inseparable PDEs, with SepONet's advantages increasing with problem complexity, dimension, and scale. For 1D time-dependent PDEs, SepONet achieves up to 112× faster training and 82× reduction in GPU memory usage compared to PI-DeepONet, while maintaining comparable accuracy. For the 2D time-dependent nonlinear diffusion equation, SepONet efficiently handles the complexity, achieving a 6.44\% mean relative $$\el_2$$ test error, while PI-DeepONet fails due to memory constraints. This work paves the way for extreme-scale learning of continuous mappings between infinite-dimensional function spaces.more » « less
-
Quantum computing has the potential to solve certain compute-intensive problems faster than classical computing by leveraging the quantum mechanical properties of superposition and entanglement. This capability can be particularly useful for solving Partial Differential Equations (PDEs), which are challenging to solve even for High-Performance Computing (HPC) systems, especially for multidimensional PDEs. This led researchers to investigate the usage of Quantum-Centric High-Performance Computing (QC-HPC) to solve multidimensional PDEs for various applications. However, the current quantum computing-based PDE-solvers, especially those based on Variational Quantum Algorithms (VQAs) suffer from limitations, such as low accuracy, long execution times, and limited scalability. In this work, we propose an innovative algorithm to solve multidimensional PDEs with two variants. The first variant uses Finite Difference Method (FDM), Classical-to-Quantum (C2Q) encoding, and numerical instantiation, whereas the second variant utilizes FDM, C2Q encoding, and Column-by-Column Decomposition (CCD). We evaluated the proposed algorithm using the Poisson equation as a case study and validated it through experiments conducted on noise-free and noisy simulators, as well as hardware emulators and real quantum hardware from IBM. Our results show higher accuracy, improved scalability, and faster execution times in comparison to variational-based PDE-solvers, demonstrating the advantage of our approach for solving multidimensional PDEs.more » « less
-
Quantum computers can produce a quantum encoding of the solution of a system of differential equations exponentially faster than a classical algorithm can produce an explicit description. However, while high-precision quantum algorithms for linear ordinary differential equations are well established, the best previous quantum algorithms for linear partial differential equations (PDEs) have complexity p o l y ( 1 / ϵ ) , where ϵ is the error tolerance. By developing quantum algorithms based on adaptive-order finite difference methods and spectral methods, we improve the complexity of quantum algorithms for linear PDEs to be p o l y ( d , log ( 1 / ϵ ) ) , where d is the spatial dimension. Our algorithms apply high-precision quantum linear system algorithms to systems whose condition numbers and approximation errors we bound. We develop a finite difference algorithm for the Poisson equation and a spectral algorithm for more general second-order elliptic equations.more » « less
-
We present a discretization-free scalable framework for solving a large class of mass-conserving partial differential equations (PDEs), including the time-dependent Fokker-Planck equation and the Wasserstein gradient flow. The main observation is that the time-varying velocity field of the PDE solution needs to be self-consistent: it must satisfy a fixed-point equation involving the probability flow characterized by the same velocity field. Instead of directly minimizing the residual of the fixed-point equation with neural parameterization, we use an iterative formulation with a biased gradient estimator that bypasses significant computational obstacles with strong empirical performance. Compared to existing approaches, our method does not suffer from temporal or spatial discretization, covers a wider range of PDEs, and scales to high dimensions. Experimentally, our method recovers analytical solutions accurately when they are available and achieves superior performance in high dimensions with less training time compared to alternatives.more » « less
An official website of the United States government
