skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on March 1, 2026

Title: Solving Multidimensional Partial Differential Equations Using Efficient Quantum Circuits
Quantum computing has the potential to solve certain compute-intensive problems faster than classical computing by leveraging the quantum mechanical properties of superposition and entanglement. This capability can be particularly useful for solving Partial Differential Equations (PDEs), which are challenging to solve even for High-Performance Computing (HPC) systems, especially for multidimensional PDEs. This led researchers to investigate the usage of Quantum-Centric High-Performance Computing (QC-HPC) to solve multidimensional PDEs for various applications. However, the current quantum computing-based PDE-solvers, especially those based on Variational Quantum Algorithms (VQAs) suffer from limitations, such as low accuracy, long execution times, and limited scalability. In this work, we propose an innovative algorithm to solve multidimensional PDEs with two variants. The first variant uses Finite Difference Method (FDM), Classical-to-Quantum (C2Q) encoding, and numerical instantiation, whereas the second variant utilizes FDM, C2Q encoding, and Column-by-Column Decomposition (CCD). We evaluated the proposed algorithm using the Poisson equation as a case study and validated it through experiments conducted on noise-free and noisy simulators, as well as hardware emulators and real quantum hardware from IBM. Our results show higher accuracy, improved scalability, and faster execution times in comparison to variational-based PDE-solvers, demonstrating the advantage of our approach for solving multidimensional PDEs.  more » « less
Award ID(s):
1942973
PAR ID:
10600283
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
MDPI
Date Published:
Journal Name:
Algorithms
Volume:
18
Issue:
3
ISSN:
1999-4893
Page Range / eLocation ID:
176
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In the realm of computational science and engineering, constructing models that reflect real-world phenomena requires solving partial differential equations (PDEs) with different conditions. Recent advancements in neural operators, such as deep operator network (DeepONet), which learn mappings between infinite-dimensional function spaces, promise efficient computation of PDE solutions for a new condition in a single forward pass. However, classical DeepONet entails quadratic complexity concerning input dimensions during evaluation. Given the progress in quantum algorithms and hardware, here we propose to utilize quantum computing to accelerate DeepONet evaluations, yielding complexity that is linear in input dimensions. Our proposed quantum DeepONet integrates unary encoding and orthogonal quantum layers. We benchmark our quantum DeepONet using a variety of PDEs, including the antiderivative operator, advection equation, and Burgers' equation. We demonstrate the method's efficacy in both ideal and noisy conditions. Furthermore, we show that our quantum DeepONet can also be informed by physics, minimizing its reliance on extensive data collection. Quantum DeepONet will be particularly advantageous in applications in outer loop problems which require exploring parameter space and solving the corresponding PDEs, such as uncertainty quantification and optimal experimental design. 
    more » « less
  2. Numerically solving partial differential equations (PDEs) remains a compelling application of supercomputing resources. The next generation of computing resources - exhibiting increased parallelism and deep memory hierarchies - provide an opportunity to rethink how to solve PDEs, especially time dependent PDEs. Here, we consider time as an additional dimension and simultaneously solve for the unknown in large blocks of time (i.e. in 4D space-time), instead of the standard approach of sequential time-stepping. We discretize the 4D space-time domain using a mesh-free kD tree construction that enables good parallel performance as well as on-the-fly construction of adaptive 4D meshes. To best use the 4D space-time mesh adaptivity, we invoke concepts from PDE analysis to establish rigorous a posteriori error estimates for a general class of PDEs. We solve canonical linear as well as non-linear PDEs (heat diffusion, advection-diffusion, and Allen-Cahn) in space-time, and illustrate the following advantages: (a) sustained scaling behavior across a larger processor count compared to sequential time-stepping approaches, (b) the ability to capture "localized" behavior in space and time using the adaptive space-time mesh, and (c) removal of any time-stepping constraints like the Courant-Friedrichs-Lewy (CFL) condition, as well as the ability to utilize spatially varying time-steps. We believe that the algorithmic and mathematical developments along with efficient deployment on modern architectures shown in this work constitute an important step towards improving the scalability of PDE solvers on the next generation of supercomputers. 
    more » « less
  3. Abstract Solving partial differential equations (PDEs) is the cornerstone of scientific research and development. Data-driven machine learning (ML) approaches are emerging to accelerate time-consuming and computation-intensive numerical simulations of PDEs. Although optical systems offer high-throughput and energy-efficient ML hardware, their demonstration for solving PDEs is limited. Here, we present an optical neural engine (ONE) architecture combining diffractive optical neural networks for Fourier space processing and optical crossbar structures for real space processing to solve time-dependent and time-independent PDEs in diverse disciplines, including Darcy flow equation, the magnetostatic Poisson’s equation in demagnetization, the Navier-Stokes equation in incompressible fluid, Maxwell’s equations in nanophotonic metasurfaces, and coupled PDEs in a multiphysics system. We numerically and experimentally demonstrate the capability of the ONE architecture, which not only leverages the advantages of high-performance dual-space processing for outperforming traditional PDE solvers and being comparable with state-of-the-art ML models but also can be implemented using optical computing hardware with unique features of low-energy and highly parallel constant-time processing irrespective of model scales and real-time reconfigurability for tackling multiple tasks with the same architecture. The demonstrated architecture offers a versatile and powerful platform for large-scale scientific and engineering computations. 
    more » « less
  4. Solving computationally hard problems using conventional computing architectures is often slow and energetically inefficient. Quantum computing may help with these challenges, but it is still in the early stages of development. A quantum-inspired alternative is to build domain-specific architectures with classical hardware. Here we report a sparse Ising machine that achieves massive parallelism where the flips per second—the key figure of merit—scales linearly with the number of probabilistic bits. Our sparse Ising machine architecture, prototyped on a field-programmable gate array, is up to six orders of magnitude faster than standard Gibbs sampling on a central processing unit, and offers 5–18 times improvements in sampling speed compared with approaches based on tensor processing units and graphics processing units. Our sparse Ising machine can reliably factor semi-primes up to 32 bits and it outperforms competition-winning Boolean satisfiability solvers in approximate optimization. Moreover, our architecture can find the correct ground state, even when inexact sampling is made with faster clocks. Our problem encoding and sparsification techniques could be applied to other classical and quantum Ising machines, and our architecture could potentially be scaled to 1,000,000 or more p-bits using analogue silicon or nanodevice technologies. 
    more » « less
  5. Surrogate neural network-based partial differential equation (PDE) solvers have the potential to solve PDEs in an accelerated manner, but they are largely limited to systems featuring fixed domain sizes, geometric layouts, and boundary conditions. We propose Specialized Neural Accelerator-Powered Domain Decomposition Methods (SNAP-DDM), a DDM-based approach to PDE solving in which subdomain problems containing arbitrary boundary conditions and geometric parameters are accurately solved using an ensemble of specialized neural operators. We tailor SNAP-DDM to 2D electromagnetics and fluidic flow problems and show how innovations in network architecture and loss function engineering can produce specialized surrogate subdomain solvers with near unity accuracy. We utilize these solvers with standard DDM algorithms to accurately solve freeform electromagnetics and fluids problems featuring a wide range of domain sizes. 
    more » « less