Abstract As cosmic microwave background (CMB) photons traverse the universe, anisotropies can be induced via Thomson scattering (proportional to the electron density; optical depth) and inverse Compton scattering (proportional to the electron pressure; thermal Sunyaev–Zel’dovich effect). Measurements of anisotropy in optical depthτand Comptonyparameters are imprinted by the galaxies and galaxy clusters and are thus sensitive to the thermodynamic properties of the circumgalactic medium and intergalactic medium. We use an analytic halo model to predict the power spectrum of the optical depth (ττ), the cross-correlation between the optical depth and the Comptonyparameter (τy), and the cross-correlation between the optical depth and galaxy clustering (τg), and compare this model to cosmological simulations. We constrain the optical depths of halos atz≲ 3 using a technique originally devised to constrain patchy reionization at a higher redshift range. The forecasted signal-to-noise ratio is 2.6, 8.5, and 13, respectively, for a CMB-S4-like experiment and a Vera C. Rubin Observatory–like optical survey. We show that a joint analysis of these probes can constrain the amplitude of the density profiles of halos to 6.5% and the pressure profiles to 13%. These constraints translate to astrophysical parameters, such as the gas mass fraction,fg, which can be constrained to 5.3% uncertainty atz∼ 0. The cross-correlations presented here are complementary to other CMB and galaxy cross-correlations since they do not require spectroscopic galaxy redshifts and are another example of how such correlations are a powerful probe of the astrophysics of galaxy evolution.
more »
« less
Reconstructing patchy helium reionization using the cosmic microwave background and large-scale structure
Abstract The intergalactic helium became fully ionized by the end of cosmic noon (z∼ 2).Similarly to the reionization of hydrogen, helium reionization is expected to be patchy, driven by luminous quasars that ionize the intergalactic gas in their surrounding environment.Probing the morphology of ionized electrons during this epoch can provide crucial information about early structure formation, including the clustering and luminosities of quasars, the accretion rates, variability, and lifetimes of active galactic nuclei, as well as the growth and evolution of supermassive black holes.In this study, we present how measurements of the cosmic microwave background (CMB) can be used to reconstruct the optical-depth fluctuations resulting from patchy helium reionization.As helium reionization occurred at lower redshifts, upcoming probes of large-scale structure surveys will present a significant opportunity to enhance the prospects of probing this epoch by their combined analysis with the CMB.Using a joint information-matrix analysis of hydrogen and helium reionization, we show that near-future galaxy and CMB surveys will have enough statistical power to detect optical-depth fluctuations due to doubly-ionized helium, providing a way of measuring the redshift and duration of helium reionization to high significance.We also show that modeling uncertainties in helium reionization can impact the measurement precision of parameters characterizing hydrogen reionization.
more »
« less
- PAR ID:
- 10599511
- Publisher / Repository:
- Journal of Cosmology and Astroparticle Physics
- Date Published:
- Journal Name:
- Journal of Cosmology and Astroparticle Physics
- Volume:
- 2024
- Issue:
- 10
- ISSN:
- 1475-7516
- Page Range / eLocation ID:
- 034
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Recently, it was pointed out that invoking a large value of the cosmic microwave background (CMB) optical depth,τCMB = 0.09, could help resolve tensions between Dark Energy Survey Instrument DR2 baryon acoustic oscillation data and the CMB. This is larger than the value ofτCMB = 0.058 measured from the Planck low-ℓpolarization data. Traditionally,τCMBis thought of as a constraint on reionization’s midpoint. However, recent observations and modeling of the Lyαforest of high-zquasars at 5 < z < 6 have tightly constrained the timing of the last 10%–20% of reionization, adding nuance to this interpretation. Here, we point out that fixing reionization’s endpoint, in accordance with the latest Lyαforest constraints, rendersτCMBa sensitive probe of the duration of reionization, as well as its midpoint. We compare low and high values ofτCMBto upper limits on the patchy kinematic Sunyaev–Zel'dovich (pkSZ) effect, another CMB observable that constrains reionization’s duration, and find that a value ofτCMB = 0.09 is in ≈2σtension with existing limits on the pkSZ from the South Pole Telescope (SPT). The strength of this tension is sensitive to the choices involved in modeling the other CMB foregrounds in the SPT measurement, and in the modeling of the pkSZ signal itself.more » « less
-
Abstract Understanding when and how reionization happened is crucial for studying the early structure formation and the properties of the first galaxies in the Universe. Atz> 5.5, the observed intergalactic medium (IGM) optical depth shows a significant scatter, indicating an inhomogeneous reionization process. However, the nature of the inhomogeneous reionization remains debated. A SPectroscopic survey of biased halos In the Reionization Era (ASPIRE) is a JWST Cycle 1 program that has spectroscopically identified >400 [Oiii] emitters in 25 quasar fields atz> 6.5. Combined with deep ground-based optical spectroscopy of ASPIRE quasars, the ASPIRE program provides the current largest sample for IGM-galaxy connection studies during cosmic reionization. We present the first results of IGM effective optical depth measurements around [Oiii] emitters using 14 ASPIRE quasar fields. We find the IGM transmission is tightly related to reionization era galaxies to the extent that a significant excess of Lyαtransmission exists around [Oiii] emitters. We measure the stacked IGM effective optical depth of IGM patches associated with [Oiii] emitters and find they reach the same IGM effective optical depth at leastdz∼ 0.1 ahead of those IGM patches where no [Oiii] emitters are detected, supporting earlier reionization around [Oiii] emitters. Our results indicate an enhancement in IGM Lyαtransmission around [Oiii] emitters at scales beyond 25h−1cMpc, consistent with the predicted topology of reionization from fluctuating UV background models.more » « less
-
ABSTRACT We present the Sherwood–Relics simulations, a new suite of large cosmological hydrodynamical simulations aimed at modelling the intergalactic medium (IGM) during and after the cosmic reionization of hydrogen. The suite consists of over 200 simulations that cover a wide range of astrophysical and cosmological parameters. It also includes simulations that use a new lightweight hybrid scheme for treating radiative transfer effects. This scheme follows the spatial variations in the ionizing radiation field, as well as the associated fluctuations in IGM temperature and pressure smoothing. It is computationally much cheaper than full radiation hydrodynamics simulations, and circumvents the difficult task of calibrating a galaxy formation model to observational constraints on cosmic reionization. Using this hybrid technique, we study the spatial fluctuations in IGM properties that are seeded by patchy cosmic reionization. We investigate the relevant physical processes and assess their impact on the z > 4 Lyman-α forest. Our main findings are: (i) consistent with previous studies patchy reionization causes large-scale temperature fluctuations that persist well after the end of reionization, (ii) these increase the Lyman-α forest flux power spectrum on large scales, and (iii) result in a spatially varying pressure smoothing that correlates well with the local reionization redshift. (iv) Structures evaporated or puffed up by photoheating cause notable features in the Lyman-α forest, such as flat-bottom or double-dip absorption profiles.more » « less
-
Abstract The epoch of reionization (EoR) offers a unique window into the dawn of galaxy formation, through which high-redshift galaxies can be studied by observations of both themselves and their impact on the intergalactic medium. Line intensity mapping (LIM) promises to explore cosmic reionization and its driving sources by measuring intensity fluctuations of emission lines tracing the cosmic gas in varying phases. Using LIMFAST, a novel seminumerical tool designed to self-consistently simulate LIM signals of multiple EoR probes, we investigate how building blocks of galaxy formation and evolution theory, such as feedback-regulated star formation and chemical enrichment, might be studied with multitracer LIM during the EoR. On galaxy scales, we show that the star formation law and the feedback associated with star formation can be indicated by both the shape and redshift evolution of LIM power spectra. For a baseline model of metal production that traces star formation, we find that lines highly sensitive to metallicity are generally better probes of galaxy formation models. On larger scales, we demonstrate that inferring ionized bubble sizes from cross-correlations between tracers of ionized and neutral gas requires a detailed understanding of the astrophysics that shape the line luminosity–halo mass relation. Despite various modeling and observational challenges, wide-area, multitracer LIM surveys will provide important high-redshift tests for the fundamentals of galaxy formation theory, especially the interplay between star formation and feedback by accessing statistically the entire low-mass population of galaxies as ideal laboratories, complementary to upcoming surveys of individual sources by new-generation telescopes.more » « less
An official website of the United States government

