skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on April 30, 2026

Title: On a Reaction-Diffusion-Advection Glucose Metabolism Model
A reaction-diffusion-advection glucose metabolism model is proposed to describe the spatiotemporal behaviors of glucose in the pancreatic islet. The global existence and boundedness of the solution to the model are proved, and the existence and uniqueness of the positive steady state are established. Spatiotemporal sensitivity index and correlation index are proposed to identify high-impact physiological factors and illustrate parameter interdependency. Additionally, different stages of glucose metabolism such as hyperinsulinemia, hypoglycemia, euglycemia, and diabetes are simulated to demonstrate the system’s dynamics under varying physiological conditions. These findings provide valuable guidance in the therapeutic process, aiding in the development of effective interventions.  more » « less
Award ID(s):
2207343
PAR ID:
10599671
Author(s) / Creator(s):
;
Publisher / Repository:
Society for Industrial and Applied Mathematics
Date Published:
Journal Name:
SIAM Journal on Applied Mathematics
Volume:
85
Issue:
2
ISSN:
0036-1399
Page Range / eLocation ID:
711 to 729
Subject(s) / Keyword(s):
glucose metabolism model reaction-diffusion-advection equation spatial heterogeneity steady state spatiotemporal sensitivity and correlation
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Diet monitoring is an important component of interventions in type 2 diabetes, but is time intensive and often inaccurate. To address this issue, we describe an approach to monitor diet automatically, by analyzing fluctuations in glucose after a meal is consumed. In particular, we evaluate three standardization techniques (baseline correction, feature normalization, and model personalization) that can be used to compensate for the large individual differences that exist in food metabolism. Then, we build machine learning models to predict the amounts of macronutrients in a meal from the associated glucose responses. We evaluate the approach on a dataset containing glucose responses for 15 participants who consumed 9 meals. Three techniques improve the accuracy of the models: subtracting the baseline glucose, performing z-score normalization, and scaling the amount of macronutrients by each individuals’ body mass index. 
    more » « less
  2. Abstract Glucose transport from the blood into the brain is tightly regulated by brain microvascular endothelial cells (BMEC), which also use glucose as their primary energy source. To study how BMEC glucose transport contributes to cerebral glucose hypometabolism in diseases such as Alzheimer’s disease, it is essential to understand how these cells metabolize glucose. Human primary BMEC (hpBMEC) can be used for BMEC metabolism studies; however, they have poor barrier function and may not recapitulate in vivo BMEC function. iPSC-derived BMEC-like cells (hiBMEC) are readily available and have good barrier function but may have an underlying epithelial signature. In this study, we examined differences between hpBMEC and hiBMEC glucose metabolism using a combination of dynamic metabolic measurements, metabolic mass spectrometry, RNA sequencing, and Western blots. hiBMEC had decreased glycolytic flux relative to hpBMEC, and the overall metabolomes and metabolic enzyme levels were different between the two cell types. However, hpBMEC and hiBMEC had similar glucose metabolism, including nearly identical glucose labeled fractions of glycolytic and TCA cycle metabolites. Treatment with astrocyte conditioned media and high glucose increased glycolysis in both hpBMEC and hiBMEC, though hpBMEC decreased glycolysis in response to fluvastatin while hiBMEC did not. Together, these results suggest that hiBMEC can be used to model cerebral vascular glucose metabolism, which expands their use beyond barrier models. 
    more » « less
  3. Background: Environmental enteric dysfunction (EED) causes malnutrition in children in low-resource settings. Stable isotope breath tests have been proposed as non-invasive tests of altered nutrient metabolism and absorption in EED, but uncertainty over interpreting the breath curves has limited their use. The activity of sucrase-isomaltase, the glucosidase enzyme responsible for sucrose hydrolysis, may be reduced in EED. We previously developed a mechanistic model describing the dynamics of the 13C-sucrose breath test (13C-SBT) as a function of underlying metabolic processes. Objective: 1) To determine which breath test curve dynamics are associated with sucrose hydrolysis and with the transport and metabolism of the fructose and glucose moieties, and 2) to propose and evaluate a model-based diagnostic for the loss of activity of sucrase-isomaltase. Methods: We applied the mechanistic model to two sets of exploratory 13C-SBT experiments in healthy adult participants. First, 19 participants received differently labeled sucrose tracers (U-13C fructose, U-13C glucose, and U-13C sucrose) in a cross-over study. Second, 16 participants received a sucrose tracer accompanied by 0 mg, 100 mg, and 750 mg of Reducose®, a sucrase-isomaltase inhibitor. We evaluated a model-based diagnostic distinguishing between inhibitor concentrations using receiver operator curves, comparing to conventional statistics. Results: Sucrose hydrolysis and the transport and metabolism of the fructose and glucose moieties were reflected in the same mechanistic process. The model distinguishes these processes from the fraction of tracer exhaled and an exponential metabolic process. The model-based diagnostic performed as well as the conventional summary statistics in distinguishing between no and low inhibition (AUC 0.77 vs 0.66–0.79) and for low vs high inhibition (AUC 0.92 vs 0.91–0.99). Conclusions: Current summary approaches to interpreting 13C breath test curves may be limited to identifying only gross gut dysfunction. A mechanistic model-based approach improved interpretation of breath test curves characterizing sucrose metabolism. 
    more » « less
  4. ABSTRACT There is great interspecific variation in the nutritional composition of natural diets, and the varied nutritional content is physiologically tolerated because of evolutionarily based balances between diet composition and processing ability. However, as a result of landscape change and human exposure, unnatural diets are becoming widespread among wildlife without the necessary time for evolutionary matching between the diet and its processing. We tested how a controlled, unnatural high glucose diet affects glucose tolerance using captive green iguanas, and we performed similar glucose tolerance tests on wild Northern Bahamian rock iguanas that are either frequently fed grapes by tourists or experience no such supplementation. We evaluated both short and longer-term blood glucose responses and corticosterone (CORT) concentrations as changes have been associated with altered diets. Experimental glucose supplementation in the laboratory and tourist feeding in the wild both significantly affected glucose metabolism. When iguanas received a glucose-rich diet, we found greater acute increases in blood glucose following a glucose challenge. Relative to unfed iguanas, tourist-fed iguanas had significantly lower baseline CORT, higher baseline blood glucose, and slower returns to baseline glucose levels following a glucose challenge. Therefore, unnatural consumption of high amounts of glucose alters glucose metabolism in laboratory iguanas with short-term glucose treatment and free-living iguanas exposed to long-term feeding by tourists. Based on these results and the increasing prevalence of anthropogenically altered wildlife diets, the consequences of dietary changes on glucose metabolism should be further investigated across species, as such changes in glucose metabolism have health consequences in humans (e.g. diabetes). 
    more » « less
  5. Abstract Investigating the evolution ofEscherichia coliin microgravity offers valuable insights into microbial adaptation to extreme environments. Here the effects of simulated microgravity (SµG) on gene expression and genome evolution ofE. coliREL606, a strain evolved terrestrially for 35 years, is explored. The transcriptomic changes for glucose-limited and glucose-replete conditions over 24 h illustrate that SµG increased the expression of genes involved in stress response, biofilm, and metabolism. A greater number of differentially expressed genes related to the general stress response (GSR) and biofilm formation is observed in simulated microgravity cultures under glucose-limited conditions in comparison to glucose-replete conditions. Longer term SµG culture under glucose-limited conditions led to the accumulation of unique mutations when compared to control cultures, particularly in themraZ/fruRintergenic region and theelyC gene, suggesting changes in peptidoglycan and enterobacterial common antigen (ECA) production. These findings highlight the physiological and genomic adaptations ofE. colito microgravity, offering a foundation for future research into the long-term effects of space conditions on bacterial evolution. 
    more » « less