Abstract BackgroundElementary educators are increasingly asked to teach engineering design, motivating study of how they learn to teach this discipline. In particular, there is a need to examine how teachers reason about pedagogical situations and dilemmas in engineering—how they draw on their disciplinary understandings, attention to students' thinking, and pedagogical practices to support students' learning. Purpose/HypothesisThe purpose of our qualitative study was to examine elementary teachers' pedagogical reasoning in an online graduate program. We asked: What stances do teachers take toward learning and teaching engineering design? How do these stances shift over the course of the program? Design/MethodWe identified two teachers, Alma and Margaret, who exhibited productive shifts in their pedagogical reasoning during the program. Drawing on interviews and videos of their teaching, we developed case studies characterizing their stances toward teaching and learning engineering. ResultsAlma shifted in her reasoning about teaching the design process, from treating it as linear, discrete steps to recognizing the dynamic, overlapping nature of design practices. Similarly, Margaret shifted in how she reasoned about failure and iteration, recognizing the need to help students analyze unexpected design performances to learn from and iterate on their designs. For both teachers, these shifts were dynamic and nonlinear, reflecting both context‐sensitivity and growing stability in their reasoning. ConclusionsEngineering teacher educators should provide opportunities for teachers to reason about the specific pedagogical dilemmas in engineering and consider how teachers integrate disciplinary understandings with attention to students' reasoning and actions and pedagogical practices.
more »
« less
This content will become publicly available on January 1, 2026
Enhancing Fisheries Development in Sub-Saharan Africa: The Role of Participatory Processes and Cross-Disciplinary Strategies in Research
Marine and fisheries research play a crucial role in addressing complex challenges related to sustainable resource management, climate change, and ecosystem health. To tackle these multifaceted issues, researchers increasingly recognize the need for inter- and transdisciplinary approaches that integrate diverse perspectives from scientific disciplines and knowledge systems (Nyboer et al., 2023).
more »
« less
- Award ID(s):
- 2318309
- PAR ID:
- 10599682
- Publisher / Repository:
- The Oceanography Society
- Date Published:
- Journal Name:
- Oceanography
- ISSN:
- 1042-8275
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract BackgroundDetermining the root causes of persistent underrepresentation of different subpopulations in engineering remains a continued challenge. Because place‐based variation of resource distribution is not random and because school and community contexts influence high school outcomes, considering variation across those contexts should be paramount in broadening participation research. Purpose/HypothesisThis study takes a macroscopic systems view of engineering enrollments to understand variation across one state's public high school rates of engineering matriculation. Design/MethodThis study uses a dataset from the Virginia Longitudinal Data System that includes all students who completed high school from a Virginia public school from 2007 to 2014 (N= 685,429). We explore geographic variation in four‐year undergraduate engineering enrollment as a function of gender, race/ethnicity, and economically disadvantaged status. Additionally, we investigate the relationship between characteristics of the high school and community contexts and undergraduate engineering enrollment across Virginia's high schools using regression analysis. ResultsOur findings illuminate inequality in enrollment in engineering programs at four‐year institutions across high schools by gender, race, and socioeconomic status (and the intersections among those demographics). Different high schools have different engineering enrollment rates among students who attend four‐year postsecondary institutions. We show strong associations between high schools' engineering enrollment rates and four‐year institution enrollment rates as well as moderate associations for high schools' community socioeconomic status. ConclusionsStrong systemic forces need to be overcome to broaden participation in engineering. We demonstrate the insights that state longitudinal data systems can illuminate in engineering education research.more » « less
-
Abstract Symbiotic nitrogen (N) fixation entails successful interaction between legume hosts and rhizobia that occur in specialized organs called nodules. N-fixing legumes have a higher demand for phosphorus (P) than legumes grown on mineral N. Medicago truncatula is an important model plant for characterization of effects of P deficiency at the molecular level. Hence, a study was carried out to address the alteration in metabolite levels of M. truncatula grown aeroponically and subjected to 4 weeks of P stress. First, GC-MS-based untargeted metabolomics initially revealed changes in the metabolic profile of nodules, with increased levels of amino acids and sugars and a decline in amounts of organic acids. Subsequently, LC-MS/MS was used to quantify these compounds including phosphorylated metabolites in the whole plant. Our results showed a drastic reduction in levels of organic acids and phosphorylated compounds in –P leaves, with a moderate reduction in –P roots and nodules. Additionally, sugars and amino acids were elevated in the whole plant under P deprivation. These findings provide evidence that N fixation in M. truncatula is mediated through a N feedback mechanism that in parallel is related to carbon and P metabolism.more » « less
-
ObjectiveIndividuals with migraine exhibit heightened sensitivity to visual input that continues beyond their migraine episodes. However, the contribution of color to visual sensitivity, and how it relates to neural activity, has largely been unexplored in these individuals. BackgroundPreviously, it has been shown that, in non‐migraine individuals, patterns with greater chromaticity separation evoked greater cortical activity, regardless of hue, even when colors were isoluminant. Therefore, to investigate whether individuals with migraine experienced increased visual sensitivity, we compared the behavioral and neural responses to chromatic patterns of increasing separation in migraine and non‐migraine individuals. MethodsSeventeen individuals with migraine (12 with aura) and 18 headache‐free controls viewed pairs of colored horizontal grating patterns that varied in chromaticity separation. Color pairs were either blue‐green, red‐green, or red‐blue. Participants rated the discomfort of the gratings and electroencephalogram was recorded simultaneously. ResultsBoth groups showed increased discomfort ratings and larger N1/N2 event‐related potentials (ERPs) with greater chromaticity separation, which is consistent with increased cortical excitability. However, individuals with migraine rated gratings as being disproportionately uncomfortable and exhibited greater effects of chromaticity separation in ERP amplitude across occipital and parietal electrodes. Ratings of discomfort and ERPs were smaller in response to the blue‐green color pairs than the red‐green and red‐blue gratings, but this was to an equivalent degree across the 2 groups. ConclusionsTogether, these findings indicate that greater chromaticity separation increases neural excitation, and that this effect is heightened in migraine, consistent with the theory that hyper‐excitability of the visual system is a key signature of migraine.more » « less
An official website of the United States government
