skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Backyard Buoys: Meeting Needs of Coastal, Indigenous Communities Through Co-Design and Co-Production
The Backyard Buoys project (https://backyardbuoys.org/) enables Indigenous and coastal communities to gather and use wave data to enhance their blue economies and hazard protections. These communities have been historically underserved, and climate change is making weather and wave predictability even harder. Leveraging low-cost, scalable marine technology in partnership with regional ocean observing networks, Backyard Buoys offers a system for community-managed ocean buoys and data access to complement Indigenous Knowledge. These innovations include a sustainable process for community-led implementation and stewardship of affordable ocean buoys along with co-designed and co-produced mobile and web-based applications (apps) that render data easy to access and understand.  more » « less
Award ID(s):
2318309 2230479
PAR ID:
10599693
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Corporate Creator(s):
Publisher / Repository:
The Oceanography Society
Date Published:
Journal Name:
Oceanography
ISSN:
1042-8275
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract As the Arctic and its rivers continue to warm, a better understanding of the possible future impacts on people would benefit from close partnership with Indigenous communities and scientists from diverse fields of study. We present efforts by the Arctic Rivers Project to conduct community‐engaged research to increase collective understanding of the historical and potential future impacts of climate change on rivers, fish, and Indigenous communities. Working in central to northern Alaska and the Yukon Territory in Canada, the project seeks to engage with Indigenous communities in ethical and equitable ways to produces science that is useful, useable, and used that may serve as an example for future research efforts. Toward this goal, we formed an Indigenous Advisory Council and together developed project‐specific knowledge co‐production protocols. This paper provides a novel model of design and implementation to co‐produce knowledge with communities across a large study domain. 
    more » « less
  2. Abstract Earth System Models (ESM)are crucial for quantifying climate impacts across Earth's interconnected systems and supporting science‐based adaptation and mitigation. However, not including end‐users, especially decision‐makers representing communities vulnerable to climate change, can limit model utility, increase epistemic risks, and lead to information misuse in decision‐making. While the ESM community increasingly values broad community engagement, end‐users may not initially perceive models as useful for local planning. Co‐designing models with end‐users fosters two‐way learning: users better understand models and their outputs, while modelers gain insights into fine‐scale local processes like monitoring practices and management priorities. Higher‐level co‐design can lead to more customized, priority‐driven, and useful modeling products. Despite these benefits, modelers often struggle to initiate meaningful partnerships with local communities. Therefore, this paper explores model co‐design from the perspective of modelers. This study presents two case studies where modelers and social scientists collaborated with Indigenous communities' decision‐makers to reflect their priorities in model design and application. In the Arctic Rivers Project, high‐resolution climate and hydrology data sets for Alaska were developed with guidance from an Indigenous Advisory Council, using optimized, coupled land‐atmosphere models. In the Mid‐Klamath Project, we partnered with the Karuk Tribe's Department of Natural Resources to assess climate change and prescribed burning impacts on terrestrial hydrology in the Klamath River Basin. Drawing from these studies, we introduce a four‐level framework: (a) Co‐design Configuration; (b) Model Tuning; (c) Incorporate Contextual Knowledge; (d) Co‐develop New Model Functions. We aim to help researchers consider and compare co‐design across diverse modeling projects systematically and coherently. 
    more » « less
  3. This article chronicles the 50-year history of tsunami research and development at the NOAA Pacific Marine Environmental Laboratory (PMEL), beginning with the merger in 1973 of the Joint Tsunami Research Effort and PMEL. It traces the development of instrumentation and modeling that brought a better understanding of tsunamis and improved warning systems. The advantage of having observational engineering and flooding modeling under one roof are highlighted. Deep-ocean Assessment and Reporting of Tsunami (DART) research and development led to technology transfer to NOAA’s National Data Buoy Center (NDBC) that now operates and maintains 39 buoys and serves as real-time data distributor for other nations. This technology was also patented and licensed by PMEL to meet the needs of the international community. DART licensee Science Applications International Corporation (SAIC) has manufactured over 60 buoys for eight different countries. DART data are essential for accurate tsunami warnings, so the global society benefits by receiving lifesaving information before the arrival of a tsunami. PMEL’s tsunami flooding modeling research led to technology transfer to NOAA’s tsunami warning centers, the National Tsunami Hazard Mitigation Program, and international tsunami preparedness communities. Short-term flooding modeling research was initiated at PMEL to improve NOAA tsunami warning operations to better serve US coastal communities. The same validated modeling technology was then applied to produce hazard maps for coastal communities in the United States and internationally through the United Nations’ Intergovernmental Oceanographic Commission (IOC). Tsunami hazard maps are an essential first step in preparing a community for the next tsunami. Using these maps and other preparedness criteria, a community can become “Tsunami Ready” for the next event. Tsunami Ready has been adopted by the IOC as the global standard for preparedness of at-risk communities with total populations exceeding 890 million people. 
    more » « less
  4. Indigenous Peoples across the Arctic have adapted to environmental change since time immemorial, yet recent climate change has imposed unprecedented and abrupt changes that affect the land and sea upon which communities rely. Co-created community-based observing programs offer an opportunity to harness the holistic breadth of knowledge in communities with the goal of tracking Arctic change while simultaneously supporting community priorities and local-scale needs. The Alaska Arctic Observatory and Knowledge Hub (AAOKH) is a network of Iñupiaq observers from northern Alaska coastal communities working in partnership with academic researchers. Here, we describe five core functions that have emerged through AAOKH, which include tracking long-term environmental changes; communicating Indigenous-led observations of the environment and their meaning; place-based and culturally relevant education; enabling scientific and Indigenous Knowledge exchange; and supporting community-led responses to environmental change. We outline and discuss specific actions and opportunities that have been used to increase knowledge exchange of AAOKH observations, make space for the next generation of Indigenous scholars, and create locally relevant data products and syntheses that can inform resource management and community planning. We also discuss our ongoing efforts to increasingly shift toward a knowledge coproduction framework as we plan to sustain AAOKH into the future. 
    more » « less
  5. Abstract In 2021, the Ocean Thematic Centre of the European Research Infrastructure “Integrated Carbon Observation System” conducted an international partial pressure of carbon dioxide (pCO2) instrument intercomparison. The goal was to understand how different types of instrumentation for the measurement of oceanpCO2compare to each other. During the two‐week long experiment, we installed various instruments in a tank facility using natural sea water (North Sea). These included direct air–water equilibration systems and membrane‐based flow‐through instruments along with submersible sensors and instruments that are normally installed on buoys and autonomous surface vehicles. In situ instruments were installed inside the tank and the flow‐through instruments were fed the same water using a pumping system. We changed the temperature (between 10°C and 28°C) and the seawaterpCO2(between 250 and 800μatm) to observe instrument responses over a wide range. Since there is no reference for surface oceanpCO2measurements, we agreed on a set of instruments serving as intercomparison reference. All data from the different instruments were then compared against the intercomparison reference during periods of stable temperature andpCO2. The study provides important information to enhance future ocean carbon monitoring networks, but makes no direct recommendation for the use of any specific sensor. A major finding is that equilibration through direct air–water contact appears to be more consistent and independent of external factors than equilibration through a membrane or photometric detection. We found several instruments with no temperature measurements at the location of equilibration or with uncalibrated temperature sensors introducing significant uncertainty in the results. 
    more » « less