A longstanding observation, which was partially proven in \cite{LNW14,AHLW16}, is that any turnstile streaming algorithm can be implemented as a linear sketch (the reverse is trivially true). We study the relationship between turnstile streaming and linear sketching algorithms in more detail, giving both new separations and new equivalences between the two models. It was shown in \cite{LNW14} that, if a turnstile algorithm works for arbitrarily long streams with arbitrarily large coordinates at intermediate stages of the stream, then the turnstile algorithm is equivalent to a linear sketch. We show separations of the opposite form: if either the stream length or the maximum value of the stream are substantially restricted, there exist problems where linear sketching is exponentially harder than turnstile streaming. A further limitation of the \cite{LNW14} equivalence is that the turnstile sketching algorithm is neither explicit nor uniform, but requires an exponentially long advice string. We show how to remove this limitation for deterministic streaming algorithms: we give an explicit small-space algorithm that takes the streaming algorithm and computes an equivalent module.
more »
« less
This content will become publicly available on July 13, 2026
Maximum Coverage in Turnstile Streams with Applications to Fingerprinting Measures
In the maximum coverage problem we are given d subsets from a universe [n], and the goal is to output k subsets such that their union covers the largest possible number of distinct items. We present the first algorithm for maximum coverage in the turnstile streaming model, where updates which insert or delete an item from a subset come one-by-one. Notably our algorithm only uses polylogn update time. We also present turnstile streaming algorithms for targeted and general fingerprinting for risk management where the goal is to determine which features pose the greatest re-identification risk in a dataset. As part of our work, we give a result of independent interest: an algorithm to estimate the complement of the pth frequency moment of a vector for p ≥ 2. Empirical evaluation confirms the practicality of our fingerprinting algorithms demonstrating a speedup of up to 210x over prior work.
more »
« less
- Award ID(s):
- 2311649
- PAR ID:
- 10599721
- Publisher / Repository:
- Proceedings of Machine Learning Research
- Date Published:
- ISSN:
- 2640-3498
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We propose data-driven one-pass streaming algorithms for estimating the number of triangles and four cycles, two fundamental problems in graph analytics that are widely studied in the graph data stream literature. Recently, Hsu et al. (2019a) and Jiang et al. (2020) applied machine learning techniques in other data stream problems, using a trained oracle that can predict certain properties of the stream elements to improve on prior “classical” algorithms that did not use oracles. In this paper, we explore the power of a “heavy edge” oracle in multiple graph edge streaming models. In the adjacency list model, we present a one-pass triangle counting algorithm improving upon the previous space upper bounds without such an oracle. In the arbitrary order model, we present algorithms for both triangle and four cycle estimation with fewer passes and the same space complexity as in previous algorithms, and we show several of these bounds are optimal. We analyze our algorithms under several noise models, showing that the algorithms perform well even when the oracle errs. Our methodology expands upon prior work on “classical” streaming algorithms, as previous multi-pass and random order streaming algorithms can be seen as special cases of our algorithms, where the first pass or random order was used to implement the heavy edge oracle. Lastly, our experiments demonstrate advantages of the proposed method compared to state-of-the-art streaming algorithms.more » « less
-
We initiate the study of biologically-inspired spiking neural networks from the perspective of streaming algorithms. Like computers, human brains face memory limitations, which pose a significant obstacle when processing large scale and dynamically changing data. In computer science, these challenges are captured by the well-known streaming model, which can be traced back to Munro and Paterson `78 and has had significant impact in theory and beyond. In the classical streaming setting, one must compute a function f of a stream of updates 𝒮 = {u₁,…,u_m}, given restricted single-pass access to the stream. The primary complexity measure is the space used by the algorithm. In contrast to the large body of work on streaming algorithms, relatively little is known about the computational aspects of data processing in spiking neural networks. In this work, we seek to connect these two models, leveraging techniques developed for streaming algorithms to better understand neural computation. Our primary goal is to design networks for various computational tasks using as few auxiliary (non-input or output) neurons as possible. The number of auxiliary neurons can be thought of as the "space" required by the network. Previous algorithmic work in spiking neural networks has many similarities with streaming algorithms. However, the connection between these two space-limited models has not been formally addressed. We take the first steps towards understanding this connection. On the upper bound side, we design neural algorithms based on known streaming algorithms for fundamental tasks, including distinct elements, approximate median, and heavy hitters. The number of neurons in our solutions almost match the space bounds of the corresponding streaming algorithms. As a general algorithmic primitive, we show how to implement the important streaming technique of linear sketching efficiently in spiking neural networks. On the lower bound side, we give a generic reduction, showing that any space-efficient spiking neural network can be simulated by a space-efficient streaming algorithm. This reduction lets us translate streaming-space lower bounds into nearly matching neural-space lower bounds, establishing a close connection between the two models.more » « less
-
We give an $$\widetilde{O}(\sqrt{n})$$-space single-pass 0.483-approximation streaming algorithm for estimating the maximum directed cut size (Max-DICUT) in a directed graph on n vertices. This improves over an $$O(\log n)$$-space $4 / 9 < 0.45$ approximation algorithm due to Chou, Golovnev, and Velusamy (FOCS 2020), which was known to be optimal for $$o(\sqrt{n})$$-space algorithms. Max-DICUT is a special case of a constraint satisfaction problem (CSP). In this broader context, we give the first CSP for which algorithms with $$\widetilde{O}(\sqrt{n})$$- space can provably outperform $$o(\sqrt{n})$$- space algorithms. The key technical contribution of our work is development of the notions of a first-order snapshot of a (directed) graph and of estimates of such snapshots. These snapshots can be used to simulate certain (non-streaming) Max-DICUT algorithms, including the “oblivious” algorithms introduced by Feige and Jozeph (Algorithmica, 2015), who showed that one such algorithm Previous work of the authors (SODA 2023) studied the restricted case of bounded-degree graphs, and observed that in this setting, it is straightforward to estimate the snapshot with $$\ell_{1}$$ errors and this suffices to simulate oblivious algorithms. But for unbounded-degree graphs, even defining an achievable and sufficient notion of estimation is subtle. We describe a new notion of snapshot estimation and prove its sufficiency using careful smoothing techniques, and then develop an algorithm which sketches such an estimate via a delicate process of intertwined vertex- and edge-subsampling. Prior to our work, the only streaming algorithms for any CSP on general instances were based on generalizations of the $$O(\log n)$$-space algorithm for Max-DICUT, and can roughly be characterized as based on “zeroth” order snapshots. Our work thus opens the possibility of a new class of algorithms for approximating CSPs by demonstrating that more sophisticated snapshots can outperform cruder ones in the case of Max-DICUT.more » « less
-
Most privacy-conscious users utilize HTTPS and an anonymity network such as Tor to mask source and destination IP addresses. It has been shown that encrypted and anonymized network traffic traces can still leak information through a type of attack called a website fingerprinting (WF) attack. The adversary records the network traffic and is only able to observe the number of incoming and outgoing messages, the size of each message, and the time difference between messages. In previous work, the effectiveness of website fingerprinting has been shown to have an accuracy of over 90% when using Tor as the anonymity network. Thus, an Internet Service Provider can successfully identify the websites its users are visiting. One main concern about website fingerprinting is its practicality. The common assumption in most previous work is that a victim is visiting one website at a time and has access to the complete network trace of that website. However, this is not realistic. We propose two new algorithms to deal with situations when the victim visits one website after another (continuous visits) and visits another website in the middle of visiting one website (overlapping visits). We show that our algorithm gives an accuracy of 80% (compared to 63% in a previous work [24]) in finding the split point which is the start point for the second website in a trace. Using our proposed “splitting” algorithm, websites can be predicted with an accuracy of 70%. When two website visits are overlapping, the website fingerprinting accuracy falls dramatically. Using our proposed “sectioning” algorithm, the accuracy for predicting the website in overlapping visits improves from 22.80% to 70%. When part of the network trace is missing (either the beginning or the end), the accuracy when using our sectioning algorithm increases from 20% to over 60%.more » « less
An official website of the United States government
